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FOREWORD 

This Project,   (6906)   "Nuclear Weapon Effects on Space Vehicles;' and Task, (690601) "Deter- 
mination of High Altitude Nuclear Weapon Effects on Space Vehicles, " are a part of the Air Force 
Systems Command applied research program 710A," NUCLEAR WEAPONS EFFECTS. " 

The study was initiated by the Flight Dynamics Laboratory,   WWRMD, under Project No.   6906, 
Task No.   690601.    The project officer was Mr.  L. E.  Gilbert.    The investigation was conducted by 
the Southwest Research Institute during the period from 1 March 1961 through 31 March 1962. 
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ABSTRACT 

Procedures for analytically predicting the response of missile bodies to blast loadings are 
presented.    The investigation involves the behavior of cylindrical shells (with various end-closures) 
and circular,   flat plates.    The numerical results obtained from the analytical methods compare 
favorably with the experimental data acquired during the study. 
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1.    INTRODUCTION 

In evaluating the vulnerability of missile systems to nuclear antimissile weapons,   one 
aspect of considerable importance is the response of the vehicle's structure.     The analytical (and 
to a lesser extent,   the experimental) information presented in this report is directed towards 
developing procedures for predicting the response of missile bodies as represented by cylindrical 
shells with various types of end-closures. 

Within the concept of structural response,   the most significant parameters which con- 
stitute a measurement of the damage a missile will sustain as the result of blast loadings are the 
deformations and accelerations.    Consequently,   each of the analytical procedures set out to ini- 
tially define the time dependent variation of the displacement components.    Once this is accom- 
plished,   it becomes a simple matter to obtain accelerations as functions of time.    For the particular 
shock sensitive components associated with each missile system,   this would provide an indication of 
the critical acceleration forces to be expected. 

It is analytically expeditious to subdivide the overall missile structure into two parts,   each 
representing different vulnerability aspects.    The first is to consider the cylinders' end-closures 
only insofar as their restraint contributes to deformational response of the shell.    Here,   it is 
implied that the missile shell itself is most vulnerable to nuclear weapon effects.    The other 
approach is to consider the cylinder end-closures themselves.    For example,   a flat,   circular plate 
would require careful analysis if it can be shown its response is considerably more severe than that 
experienced by the shell. 

Accordingly,   in Section 2,   comparatively straightforward analytical procedures for 
acquiring displacements that are reasonably accurate and not unnecessarily laborious are pre- 
sented.    For the cylindrical shell,   both the small and large deflection,   linear-elastic theories are 
used.    In the small deflection approach,   the effect of end-closures (simple,   fixed and elastic sup- 
port) are considered.     Two treatments of the circular,   flat plate are presented:   one entails the 
dynamic response of circular plates at large amplitudes and the other the plastic collapse of cir- 
cular plates under blast loadings.    Each analytical procedure is carried out in sufficient detail so 
as to present results which are immediately applicable to specific problems. 

In Section 3,   extensive numerical computations are presented for the analytical procedure 
based on the linear-elastic,   small displacement shell theory.    In evaluating the analytical pro- 
cedures for predicting the response of cylindrical shell structures to blast loadings,   there are 
several logical,   as well as practical,   reasons for initially investigating the adequacy of the simplest 
method.     Foremost among these reasons is the fact that these methods provide numerical solutions 
for a wide variety of variables with a minimum expenditure in computational effort.     The extent to 
which various load and time parameters and certain approximations influence the numerical 
answers and cause these predicted answers to approach or deviate from the experimental results 
can be quickly determined. 

Moreover,   once these numerical solutions are available,   they also become of value in form- 
ing a foundation for subsequent,   more complex analytical procedures.    This approach has been 
adopted in the numerical analysis of the cylindrical shells.    In Section 3 are the results of the cal- 
culations using analytical methods based on linear-elastic,   small displacement theory.    Included 
are comparisons of various combinations of overpressure and positive phase durations. 

The information and data obtained in the limited experimental portion of the program are 
presented in Appendices I and II.     These data (involving the radial displacements) are compared 
with the analytical results in Section 4. 

Manuscript released by the authors July 1962 for publication as an ASD Technical Documentary 

Report. 
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2.    ANALYTICAL PROCEDURES 

2.1    Response of Cylindrical Shells to Impulsive Loadings 

2.1.1    Linear-Elastic,  Small-Deflection Theory 

The development of the necessary equations for the analysis of cylindrical shells begins 
with the displacement [£quation(I. 12)]   and frequency [Equation(I. 13)]   equations in Appendix I.    We 
assume that the cylinder's end-closures consist of elastic media which offer unequal,   elastic 
restraint against rotation.    For generality,  we define these elastic restraints as S,  at x = 0 and 
S2 at x = L where S is the stiffness per unit length of the medium or the moment required to rotate 
a unit length of the medium through an angle of one radian. 

The boundary conditions are taken as 

M 
X(j> 

- S 
x = 0 

8w 

1 9T 

M x<M 

X = 0 

x =L 

=   0 

9w 
52 äT 

x =L (2.1) 

The first two equations denote the condition of continuity between the shell and the end-closures. 
The condition that the radial displacements are zero at the shell's boundaries appears reasonable, 
particularly for end-closures (such as flat plates) which offer a high degree of transverse restraint. 
Since 

Mw>   =   D 
x<p 

|9   w      n  v     "I 

Equations (2. 1) may be rewritten as follows 

a2 o   wi 

dx 

fl2 
0   w I 

aT1 

- R 

Ix = L 

8w 1 

1 9; 

R 
9w 

2"9x" 
x = L 

w =    0 
|x = 0 

wl =0 
x =L 

(2.2) 



where 

SL 
R   =   -D 

Utilizing Equations (2. 2) in Equations (I. 12) (Appendix I) we obtain the following set of 
linear,   homogeneous equations 

I   Cj   =   ° 
j 

Z c/j   =  0 
j 

y \zc. - R. y \.c. = o 
j   J J       j   J J 

p (j = 1,2,3,4).                                                                         (2. 3) 

Z   \?CjeXJ   -R2   Z   \C-eXi   =   0 
j                                    j                                    J 

Since \j = K,   X2 = -K,   X3 = iK,   X4 = -i/c  (see Appendix I),   Equations (2.3) yield the 
following coefficient determinant which must vanish in order for these equations to be consistent. 

111                                        1 

eK                           e"K                         eiK                                 e"iK 

=   0                             (2 4) 
K - R1                 K. + Rj                  -(K + iRx)                 -(K - iRj) 

(K - RJeK         (K + R)e-K        -(/c + iRJei/c           -(K - iR  )e"lK 

2                             2                                  ^                                     ^ 

Expanding the determinant,   we have 

2 
A  =   8i[2(c    sinh K sin K + K(RJ  - R2 )(sinh (c cos K - cosh K sin K\ 

+ R,R2(1  - cosh K cos K)   =   0 

Given the appropriate values of Rj and R2,  the corresponding values of K may be determined, 
thereby providing the necessary values for a£ = X^L = K/L for the frequency equation 
[Equation (I. 13)] . 

The related displacement equations are 

K3KC r     2.1 KX »cx\ 

(2.5) 

+  KRi 

umn(x'*'t}   =  r K  L     COS m* sin "^n* {^V5"1 K cosh17 + sinh K cos T", 

ll \rZ (sinhlJ + sin'T) + r4("cosh'^)   + 2KR2(cosKcosh■!Jx- 

lcx\        r   /     KX
      

KX
\ 

sh K cos Y" J - RiR2     r3 I sinh ~L + Sln "U J 

(cos^-coshig)]} (2.6) 



where 

2 f     2  / <x. KX \ vmn^x' $• ^    =    r K       Sin "^ Sin Cümnt 1 2K
     ( sin * sinh -r-   + sinh (c sin -r- 1 

+ KR:   [r2(cosh^ - cos^) + r4 (sin^g - sinhigj] 

(Kx KX\ I / K." 
cos K sinh —   - cosh K sinh -=-)- RjR2     T3  (cosh -y 

-cos—J+T,   ^sm —   -  sinh^-jjj 

wmn(x> <M)   = ~   cos m* sin ^„t j 2K     f sin K sinh -^ + sinh K. sin — ) 

+ KR 

KX 
- cos -=— 

2 
Tj    = 2/c    sin K + /cRj(sinh K - cosh K + sin /c - cos K) + 2KR2 cos K 

+ Rj 1*2(sinh K - cosh K + sin K + cos   K) 

r2    =    sin K + sinh /c 

To    =    cosh K. - cos K 

T,    =    cosh K + cos K. 

(2.7) 

r2  f cosh -jj  - cos -^ j  + T4  (sin-^ -  sinh -^   Yl 

+ 2KR2   I cos K sinh -^   - cosh K sin -^J  - RjR2     T3 (cosh ^ 

) + r2 (sin if - sinh x)]r (28) 

Having defined the relation for the deflections,   it then becomes a simple matter to obtain the 
accelerations as functions of time. 

For the case where the elastic restraints at either end of the cylinder are equal 
(Rj = R2 = R),   Equation (2. 5) reduces to 

2 ? 
A  =   8i [K    sinh K sin K. + R^ (1 - cosh K cos K)]    =   0 (2. 9) 

and Equation 2. 8 becomes: 



wmn(x,<M)   =   =- cos m<t> sin co^t 4 2K     (sin K sinh -j-   + sinh (c sin-^-J 
1                                         L 

T            /           KX                          KX \                     /                KX           .              \] 
- KR     T2   (cos—   - cosh-^-j   + T3  ^smh —+ sin -JJ H 

. R2 [r3 (cosh?   - cos?)   +r2 (sin?-  sinh?)]}                           (2. 10) 

where 

r1    =    2K sin K + R(K + R)[sinh K - cosh fc + sin K + cos K] 

Similar expressions for umn(x, «>, t) and vmn(x, 4>, t) are found by using the relations 

K3    9wmn(x, <)), t) 
umn(x,4>,t)   -   Ki              QX 

(2. 11) 
K2    9wmn(x,<t»,t) 

vmn(x,<M)   - -mKi            a<j)                 ^ 

may be 

If the cylinder's end-closures are extremely rigid such that the boundary conditions 
assumed fixed,   then R -*• co and Equations (2. 5) and (2.8) reduce to 

(2 
A  =    1  - cosh K cos K   =    0                                                                                                                                       " 

12) 

wmn(x,<M)   =   Ä cos m<t> sin c^t    T3  (cos?- cosh?) 
1                                       L 

/            KX             .       Kx\"l                                                                                                                                                    (Z + r2^sinrrI- -  sin— jj                                                                                                             I   ■ 13) 

where 

r"   =    sinh K - cosh K + sin K + cos K 
1 

simply 

For the condition where the cylinder's end-closures are such that the boundaries are 
supported,  then R = 0   and Equations (2. 5) and (2. 8) become 

A  =    sinh K sin K   =   0 
• 14) 

wmn  (x, <fr, t)     = ■    C4 cos m+ sin «^t sin?                [Ref.   Eq.   (2. 3)]                                 (2 .15) 

5 



Equations (2. 12) and (2. 14) provide the extreme values of K.    That is,  for the cylindri- 
cal shell with both edges fixed,   Equation (2. 12) gives 

[2n+ 1] TT = n'ir (n= 1,2,3,...) (2.16) 

whereas for the simply supported boundaries,  Equation (2. 14) gives 

K   =   mr (n= 1,2,3,...) (2.17) 

Similarly,  from Equation (2.9),  we obtain the variation of K with the term representing the end- 
closures' stiffnesses.    This is shown in Figure 2.1. 

2.1.2   Linear-Elastic,   Large Deflection Theory* 

In order to avoid the prohibitive difficulties associated with a detailed analysis and 
thereby obtain a solution that will lead to useful information,  we assume that: 

(a)    The elements normal to the middle surface remain normal and unstretched 
(extensional or membrane vibrations) 

(b)     The cylinder wall is thin (^t^) 
(c)    The longitudinal (u) and tangential (v) displacement components are small 

compared to the radial displacement (w). 

For the equations of motion,  we  have 

3N 3N xx xy 
+ ~~^  =    phü 3x 9y 

3N 3N _^ + ^JQ: = ph„ 
3x 9y 

(2.18) 

Following the format of Fung and Sechler'   *   ',  we define the strain components at the shell's 
middle surface as 

'x        a 

9v 

u      1 / 3w\Z 

x +2 Ux / 

1 / 3w\2 

2 \ 3y / 3y      2 \ 3y 
w 
a 

3u      3v      3w   3w 
7xy   "    37+3~x'+8ir   3~y~ 

(2.19) 

By neglecting the inertia terms in the x and y directions (this corresponds to a first order approxi- 
mation in the perturbation procedure) and introducing the stress function F(x, y) where Equa- 
tions (2. 17) are satisfied by 

32F 

3y 
2 = Nxx' 

3ZF 

3x2 
N. yy. 

32F 
3x3y N. xy 

*Notation in this section same as that given in Appendix I except where noted. 
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we obtain the compatibility equation 

V4F Eh 
[7 dZw\       92w   aZw    i   3Zw"j 
LUxay^   -  9x2    g   2  - a   8x2j (2. 20) 

and the equation of motion for the radial displacement 

4 
V  w 1 [<LJ1 DUx2 

~2 „2 
9   F 9   w 
a   2 ~2 

9y 9x9y    9x9y 

^2 „2        „2 
9   F        9   w   3   F 

+ ■ 
9Lt r\      C, y       ox 

1    9^F , "] 
+ —    2" + P(x' $• t) - pw 

9x J 
(2.21) 

The problem now becomes one of assuming a form for the radial displacement,   using 
it to determine the stress function from Equation (2. 20) which,   in turn,   is applied to Equa- 
tion (2. 21).    The latter equation suggests that the radial displacement may be of the form 

w(x,y,t)    =    f(t)   •    G(x,y) 

where G{x, y) denotes the mode shape. 

The most appropriate expression is one which is sufficiently complete so as to embrace 
all the significant parameters but not unduly complex so as to complicate the analysis and intro- 
duce refinements that are not commensurate with the required accuracy of the final numerical 
answers. 

As an example of a simple mode shape,  we take 

w(x, y, t)    =    f(t)[  sin ax cos ßy + 41 sin ax cos 7y] (2. 22) 

where a = TT/L,   ß = 1/a,  y - m/a,   and m denotes the number of circumferential half waves. 
Using Equation (2. 22) in Equation (2. 20) and after extensive algebraic manipulation,  we arrive at 
the following expression for the stress function 

Eh[ f(t)fa2 
[Kj cos 2ßy + K2 cos 2yy + K3 cos (ß - y)y + K4 cos (ß + 7)y 

+ Kr cos 2ax + K/ cos (ß - 7)/ cos 2ax + K? cos (ß + y)y cos 2ax 

+ K„ sin ax cos ßy + K„ sin ax cos -yy] (2.23) 

where 

K, K„ + 
(P + T)2 

K »KP - 7) 
7   [4az + (ß + 7)2] 2 

K 2 " -  2 
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Kc 
P2 + *V 

8a4 
Kc 

f(t)a(a2 + ß2)2 

K 3 " -      T 
(P - 7) 

^(P+ a) 
K6 = 7T~2 

[4a" + (ß-7)2]2 
K 

44/ 
9   f(t)a(a2 + 72)2 



For a radial displacement equation of the form 

w(x, y, t)   =   f(t)[sin ax cos ßy + sin  ax cos yy + $ sin ax] (2. 2-4) 

the stress function is as follows 

?   2 
F   =   

Eh[f(t|]   a    [Kl cos 2ßy + K2 cos 2yy + K3 cos (ß - y)y + K4 cos (ß + y)y 

+ K5 cos 2yx + K6 cos (ß - y)y cos 2ax + K? cos (ß + y)y cos 2ax 

+ Kg cos 2ax cos ßy + Kg cos 2ax cos yy + K1Q cos ßy + KJJ cos yy 

+ K12 sin ax cos ßy + K13 sin ax cos yy + K14 sin ax] (2. 25) 

where Kj through K7,   K12 and K13 are the same as those given for Equation (2. 23) (except 
that ^ = 1) and 

Kg   = 
2$ß2 

K10 " 
2* 

2        2 2 
(4a    + ß   ) ß2 

2§?y 
KH = 

2$ 
Kg   - ?         2 2 (4a^ + ßY 

2 
y 

As a final example,   for 

w(x, <j>, t)   =   f(t)[A sin ax cos ßy + sin ax cos -yy + x sin    axl (Z- 2^) 

the stress function becomes 

2   2 
F   =   Eh[f(t]]    a     [K: cos 2ßy + K2 cos 2yy + K3 cos (ß - y)y + K4 cos (ß + y)y 

+ K5 cos 2ax + K6 cos (ß - y)y cos 2ax + K? cos (ß + y)y cos 2ax 

+ Kg sin ax cos ßy + K_ sin ax cos yy + K1Q sin 3ax cos ßy 

+ Kj2 sin 3ax cos yy] (2. 27) 

where K,  through K4>   K^,   and K-, are identical to those for Equation (2.23) (for ^ = 1) and 

„2  .  ,„^2     Jx 

K 
y   + <^    - af(t) 

^5   " 8a4 

K     _[1 -ay2
Xf(t)]4 

8        f(t)a(a2 + y2)2 



K     =   [1 - aß2
Xf(t)]4^ 

9 f(t)a(a2 + ß2)2 

K *£ 10   "    ,.   2 ^    2.2 
(9a    + y  ) 

K        -    -^ 11    '   (9a2 + ß¥ 

The Galerkin procedure may now be used to find the differential equation for the time 
function f(t), thereby providing not only the deflection, but also the acceleration as a function of 
time.    The Galerkin equation will have the form 

rL rZwa f_ 4      T92w a2F   ,   32w    a2F  ,   82w 3
2
F   I  9

2
F 

• 2  -=—r—   T:—=—  +    T"   =r~ H— /TKK 2    3y2  ~       9x9y   9x9y gy2    ax2      a    ax2 

w     w(x, (j), t) > + p(x, <)>, t) - pw     w(x, (j>, t) >• dxdy   =   0 (2.28) 

where,  for example,  the stress functions (F) derived from the radial displacement expression 
w(x, <(>, t) would be those from Equations (2. 22) and (2. 23),   (2. 24) and (2. 25),   or (2. 26) and (2. 27). 

In order to obtain a solution for Equation (2. 28),   it is first necessary to specify the 
external loading conditions,  p(x, 4>.t).    One satisfactory relation is the following 

p(x,<M)   =   (p0 + Pl COSa) T(t) (2'29) 

where,  for example, 

T(t)   =   e-5t 

T(t)     =     Ct 

The differential equation for the time function is of the form 

J + AXJ
3 + A2J

2 + A3J   =   A4T(t) (2.30) 

where J = f(t)/a   and A,, . . .A.   are coefficients reflecting the particular characteristics of the 
mode shape and load function.    As a particular example,  we take L = 36 inches,  A = 6 inches, 
h = . 036 inch,   E = 2. 9 X 106 psi,   v = 0. 25 and p = 24. 7 X 10"° lb-sec2/in    as the properties of 
the cylindrical shell.    For the mode shape defined in Equation (2. 26) (with x = °>  A =  i-0   or 0, 
and n = 2) and the loading defined as 

p(x, <(>, t)   =   p0(l + B cos ßy)e" 

the numerical values of the coefficients are as follows: 
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For  A= 1:  p0 = 70 psi, B = 4/7 and 6 = 2. 77 X 10"2 

Ax = 23.4, A2 = -14.3, A3 = 5.8, A4 = 3.72X10"
3 

For  A= 0:  P{) = 70 psi, B = 4/7, and 6 = 2. 77 X 10"2 

Aj = 10.4, A2 = -1.1, A3 = 0.3, A4= 1.65X10
-3 

The variation of J as a function of T(t) is given in Figure 2. 2.    Accordingly,  the maximum radial 
displacements for A= 1 and A = 0 are   respectively 

w =   0.022" max 

w =   0.11" max 
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2. 2   Dynamic Response of Circular Plates 

2.2.1    Large Amplitudes 

LIST OF SYMBOLS 

a radius of circular plate (in. ) 

D =    —  ,   flexural rigidity of plate (lb in. ) 
12(1 -  v2) 

E modulus of elasticity of plate (lb/in'2) 

f,   F,  G functions of time 

h thickness of plate (in. ) 

Jn,   In,   Yn,   Kn Bessel functions of order n 

N =   (Nr  + Nt)/(1  + v)       (lb in-1) 

N* buckling load of circular plate (lb in"1) 

Nr>   Nt stress resultants in the radial and tangential directions,   respectively (lb in"   ) 

p natural frequency of plate (sec"1) 

r,   6 cylindrical coordinates 

— r r -   — 
a 

t time (sec) 

7 =   t!l        / E " 
a2   V   12(1  -  v*)p* 

v velocity (in.   sec     ) 

-                                         a2         /l2(l -  v2)p* 
= V^I    V  E—"" 

w lateral deflection of plate (in. ) 

w 

p mass per unit area of plate (lb sec2 in-:S) 

p* mass density of plate material (lb sec2 in-4) 

A ? 7 I a2    l  9     l   94 \ V4 =   (V2)2 = biharmonic operator   =   ^— +__+__ j 

It is well known that when the lateral deflections are large the behavior of plates is gov- 
erned by two coupled nonlinear partial differential equations usually credited to von Kä'rmä'n. *   ■    ' 
The dynamic analogue of these equations has been derived by G.  Hermann. (2< 3)   Chu and 
Hermann!2'4)   have calculated the fundamental frequencies of rectangular plates at large amplitudes 
by an energy procedure. 
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However,  a theoretically exact solution of the dynamical equations even for the case of 
free vibrations is nonexistent.    The case of forced vibrations had apparently not been studied at all. 
It is to be realized that,  owing to the nonlinearity of the equations,  the free and forced vibration 
problems cannot be solved separately and superposed,  neither can advantage be taken of the concept 
of normal modes as is usual in the linear case. 

In 1955,   BergerV2- 5) proposed a set of equations which may be termed a simplified version 
of the von KÄrmän system.    The merit of his method lies in decoupling the two equations,   so that one 
of them assumes a quasi-linear form and can readily be integrated.    He showed further that his equa- 
tions yielded solutions remarkably close to those obtained by more elaborate procedures using von 
Karman's equations,   at least as regards deflections.    Berger,   it must be remarked,   confined him- 
self to the static case. 

Nash and Modeer'^* "' extended the Berger equations to the dynamic case for rectangular 
plates and showed that the free vibration problem can be treated to yield results which are reason- 
ably close to the results obtained by Chu and Hermann. (2>4) 

In what follows,  the dynamical equations a la Berger are extended to circular plates.    By 
using an approximate step-by-step procedure.it is shown that not only the free vibration but also the 
forced vibration problem may be solved using the elementary concept of normal modes.    It is neces- 
sary to add that although the basic Berger formulation has a quasi-linear form for the static case,  it 
is nonlinear for the dynamic case and cannot be solved with comparable ease. 

2.2.1.1   Equations of Motion 

For the dynamical case,  the Berger equations for circular plates may be written in the 
form 

2 
^,4 2^2      ,  P    ^   w f(r, 0, t) 

D   at2 D 

a2h2 _   _£u +   1_   /_8w\2 u +   1 _3v +  _1_    / 3w\ 2 

12 Sr       2    \3r/ r       r   30       ?T2    \90/ 
=   e„ + et 

(2.31) 

Zri.    \dö/ - -   J 

in   which V    =   (V  )     is the biharmonic operator, p is the mass of the plate per unit of area,   w is the 

lateral deflection,   u and v the radial and tangential displacements,   D =     is the flexural 
12(1 -  v2) 

rigidity of the plate,   h its thickness,   E is the elastic modulus,   v is Poisson's ratio and f a given 
forcing function. 

The radial and tangential strains   er and et may be expressed in terms of the stress result- 
ants Nr and N^ as follows 

er = -^ (Nr - vNt) hE 

et = h¥ (Nt" vNr) 

(2.32) 

It follows from (2. 32) and the second of (2. 31) that 

a2h2        1  -  v   ...     ,  >T .    Nh2 ,,   ool __=   __(Nr+Nt)=_ (2.33) 

In the Berger formulation, a is constant throughout the plate and thus N,  which has the 
same dimension as a stress resultant,   is also constant throughout the plate.   [The simplicity of the 
Berger equations apparently derives from the basic assumption that (Nr + Nt) is constant. ] 
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From Equations (2. 33) and the second of (2. 31) one finds 

NhZ   _  du      J_   /9w\2        u       1   dv + _1_   /9w\ 
12D  "   9r+   2   Ur/ r       r   30       2r

Z    \de ' 

In view of the assumed constancy of N with respect to r and 0,   one may multiply by r dr d0 and inte- 
grate over the plate to find 

3v 
80 

r dr d9 + 

If the boundary conditions are such that u and v vanish at the boundaries,   the first two integrals on the 
right-hand side are evanescent and there must follow 

2TT    a 
Nh? il^=L    f     f      (tzY    +_L   (SSV   rdrdfl 

12D 2j     J        \9r / r2   \8e/ 
0      0 

using (2. 33) the first of (2. 31) may be written 

74w.Nv2w + f_  £fw=   f(r.fl.t) 
D D   3t2 D 

(2.34) 

The problem now reduces to the integration of the system (2.34). 

2.2.1.2   Integration Procedure 

It is seen from the first of (2. 34) that N is a function of time alone and that the second of 
(2.34) is effectively nonlinear.    The problem of finding the dynamic response of such a system cannot 
be solved by superposition of the separate solutions of free vibrations and of the steady state  prob- 

lem. 

A step-by-step integration procedure is here proposed for the integration of the system 
(2. 34).    The assumption is made that N,   which is proportional to the sum of the membrane tensions 
(Nr + Nt),   remains constant at N for a sufficiently short interval of time_A .    It is evident that the 
second of (2. 34) assumes a linear form and may be readily integrated.    N is evaluated from the first 
of (2. 34) at the beginning of each time interval.    The nonlinear problem is thus reduced to a series of 
linear problems in time. 

Even this simplification,   it may be notedj_ still involves a prodigious amount of labor.    For, 
since the normal modes of vibration are a function N,  they are a function of time also.    Furthermore, 
the forcing function f(r, 6, t) has to be expanded in a series of the normal modes appropriate to that 

time interval. 

Thus,   the general procedure is as follows:   Starting with the given initial conditions,   eval- 
uate N from the first of (2. 34).    Use this value of N to solve the homogeneous part of the second  of 
(2. 34) and determine the natural frequencies.    Expand the forcing function in terms of the normal 
modes and determine a particular solution of the second of (2. 34).    Use the initial conditions at time 
zero to determine the deflection and velocity at the end of the time interval A.    Use the latter as the 
initial condition for the second time interval A.    Repeat this procedure up to any desired time t = sA. 

(Some of the tediousness of this procedure may be reduced if one ignores the change in the 
normal functions at each time interval,   using throughout instead the functions appropriate to the initial 
interval,   but taking account of the change in the natural frequencies at each interval. ) 
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Returning now to the second of (2. 34),   let 

w = R(r)9(0)sinpt (2.35) 

where R is a function of r alone and 9 is a function of 0 alone.    On substitution into the homogeneous 
part of the second of (2. 34) and dividing out the common factor sinpt there follows 

V4(R6) - ^ V2(R6) - £-£ R9 = 0 

which may be written in the form 

(*2^) (*2-£) <">" (2.36) 

where 

x2 = Na^ 
2D 

P 
2 _ Naz 

2D ] 
(2.37) 

aZ        2 _ Na^ p    - a    =   v D (2.38) 

(2.39) 

and (2.40) 

Equation (2.36) shows that the complete solution may be obtained by adding together,   with 
appropriate arbitrary constants,  the solutions of the two equations 

(''♦it) 

On letting 

*   9 = cos(n6 - yn) 

Equations (2.40) yield two ordinary differential equations for the determination of R 

,2„        .,„.22, 

R9 = 0 

R6 = 0 

(2.41) 

fL*+Id*+   (s*_ ILL)  K = 0 
dr2        r  dr V a2       r

2 / 

Va2       r2/ 
dzR  ,    1   dR +  — 
dr2        r  dr 

The solutions of (2.42) are,   respectively 

»-"■(?) ♦«»(?) 
and 

(2.42) 
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in which Jn and Yn denote Bessel functions of the order n of the first and second kinds,   respectively. 
In and Kn are the modified Bessel functions of the first and second kinds,   and A,   B,   C,   and D are 
arbitrary constants.    (The notation for the Bessel functions is that used in Reference 2. 7. ) 

In the case of a solid plate,   Yn and Kn are inadmissible because of the singularity at r = 0, 
and the general solution of the system (2. 42) is thus 

R=AnJn(^)+BnIn    (£) (Z.43, 

The general solution of the homogeneous part of the second of (2. 34) may now be written 

w = { AnJn (^-)    + BnIn (&-\\        j cos n9 + Cn sinnS j   |sinpnt + Dn cos pnt|  (2.44) 

The frequency equation and the ratio B^A^ may be obtained from the boundary conditions. 

In the case of a simply   supported plate,   one has 

w = 0 

a2 
o   w 

3r2 

/l   3w        1     32w\   _ . v(7ä7 +72-^2J   "° 

and in the case of a clamped plate 

w = 0 

9w 
dr 

0 

at r 

at r = a (2.45) 

(2.46) 

Substitution of (2.44) into (2.45) yields 

Bn =      Jn(i) 
An     "   In(ß) 

Jn + l(a>   .       In + l(ß) =   p2 + aZ 
Q     Jn(a) P     In(ß) 1 "  v 

and the substitution of (2.44) into (2.46) leads to 

J» 

(2.47) 

In(ß) 

Jn + l<a>  ,  „   In + l<ß)       . a —T   ,   t— + p      ,   ,„.  = 0 
Jn(a) UP) 

(2.48) 

The second of (2.47) is the frequency equation for the simply supported plate and the second of (2.48) 
for the clamped plate. These equations, together with (2. 3'8), are sufficient for the determination of 
the natural frequencies pn for given values of N. 
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Defining 

N*     V 

4. 2D N* = —:
-T— with v = 0.3,  for a simply supported plate 
a2 

14.68D for a clamped plate 

(2.49) 

the frequency equation for the simply supported plate may be written 

Jn(<0 
+ ß. 

Ln + 1 (P) 
M» 

p2 +a2 

1 -  v 

p2 . a2 = 4.2(f) 

0.3 

(2.50) 

and that for the clamped plate 

Q      Jn(Q) P       In(ß) 

P2 - a2 = 14.68<)> 
(2.51) 

Equations (2. 50) and (2. 51) may be solved for various values of the parameter <j> and the 
values of a and p so derived may be tabulated or graphed as functions of $. 

Bni        Jntei) It will be noted from (2. 45) and (2. 46) that the ratio =       .       whether the plate is 
xnj In(Pi) 

(2.52) 

simply supported or clamped. 

Letting 

j (*r\    J>j>x (fi£\ _R . 

one may write the deflection function (2.44),   corresponding to the (nj)*    frequency as follows 

wnj  = Rnj {Anj cos n0 + Bnj sin no j    [ sin pnjt + Dnj cos pnjt]• (2.53) 

in which Anj,   Bnj and Dnj are new arbitrary constants,  to be determined from the initial conditions. 
It may be seen that (2. 53) may be written in the form 

"nj Rnj -I Anj(t)cosn0 + Bnj(t)sinne| 

where 

Anj(t) = Anj |sinpnjt + Dnj cos PnjtJ 

Bnj(t) = Bnj |sinpnjt + Dnj cos PnjtJ 

(2.54) 

(2.55) 

Any arbitrary deflection satisfying the boundary conditions,   and therefore the solution of the homo- 
geneous part of the first of (2. 34) appears finally in the form 

oo      co 
wc=    2 S     RnjAnj(t) cosnö +    S       S    RnjBnj(t) sinn 

n=0j=l n=1 j = 1 

where the superscript "c" on the left denotes "complementary function. " 

(2.56) 

18 



2.2.1.3    Forced Vibration 

In seeking a particular solution of the first of (2. 34),   it will be supposed that the forcing 
function f(r, 0, t) can be expanded in terms of the principal modes in the form 

f(r, 0, t) = F(t)EERni(rnicosn0 + snisinn0) 
nj      J       J J 

A particular solution of (2. 34) is sought in the form 

wP = y.y,R_, -j anj(t)cosn0 + bnj(t) sinn©} 
n J 

(2.57) 

(2.58) 

in which anj and bnj are undetermined time functions. 

Inasmuch as R^; cos no and R^ sinn0 satisfy the homogeneous part of the first of (2. 34) 
there must follow 

cos n0 

sinn0 D 
_   PnjP Rni 

cos n0' 

sinn0 
(2.59) 

Substituting (2. 58) into the first of (2. 34) and making use of (2. 59) one finds 

4- anj + Pnjanj 
F(t)f, nj 

nJ + Pnib: 
F(t)sn, 

nj"nj 

(2.60) 

(2.61) 

Let the particular solutions of these equations be 

anj = gnjG(t) 

bnj = hnjG(t) 

From (2. 58) and (2. 61),   one gets 

wP = SSRni (gn: cos n0 + h^ sinn0)G(t) (2. 62) 
n j       J        J J 

The complete solution of the first of (2. 34) may now be obtained by adding (2. 56) and (2. 62) 
co      co co      oo 

w = wc+wP=    E       E    ILj^jlt) +gniG(t)] cosn0 +    E       E    R^[Bni(t) H-l^^U)] sinn0 
n=0j = l        J        J J n=1 j =1        J        J J 

(2.63) 

Let the. initial conditions be 

w = $(^4.(0) 

w = x(r)lJl(e) 
at t 

These can always be expanded in Fourier-Bessel series of the form 

w =    E      E     RnjHnjcosn0 +    E      E     RnjLnjsinn0 
j=ln=0 

CO        CO 

E      E 
j=ln=l 

w =    E 
CO        CO 

E      E     RnjMnjcosn0+    E      E     RnjNnj sinn( 
j = 1 n=0 j=ln=0 

(2.64) 
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where 

r   r XHnj = J     J     <t>(r)+(0)Rnjcosn0rdrd0 
0      0 

2*   a 
\Lnj = J     J     <)>(r)i{i(0)Rnjsinn0rdrd0 

0      0 

2*   a 
VMnJ = J      J     x(rM0)Rnjcosn0rdrd0 

0      0 

2i7   a 
XNnj = J      J     x(r)n(e)Rnjsinn0rdrd0 

in which 

X.= 2 ir/    R; nJ r dr n = 0 

n + 0 

n^O 

(2.65) 

-./* Rnjr dr n 4 0 

From (2. 63) and (2. 64),   using (2. 65),   one finds 
oo     oo oo     oo 

w=    2      2      RniUnicosn0 +    2      2      R^Wnisinn© 
n=0 j=l        J     J n=1 j=1        J      J 

oo    oo OO     00 

w =    2     2       RniVnicosn0+    2     2       RniZnisinn0 
n=0 j= 1        J      J n=1 j=1        J      J 

in which 

U-J =^I (M-J • gnJ6(0)} BlnV + (H-J - g-JG(0)} COS V + gnJG(t) 

V
nj = {Mnj " gnj6<°>} ^«Pnj* " ?nj {Hnj " gnjG(°>} ^nj* + gnj0^ 

Wnj ~ {Nnj " hnjG<°>} sinV + {Lnj " hnjG(0) } cos pnjt + hnjG(t) 

G(O)}   cospnjt - pnj    {Lnj - hnjG(0) }  sinpnjt + hnjG(t) { N   • - h nj nj 

(2.66) 

The deflection is now completely known and the acceleration may also be determined.    It 
is to be remembered,   however,  that this solution is valid only for the time integral (t -  r) during 
which the parameter N is supposed to remain constant.    In Equation (2. 66),   therefore,   the time vari- 
able must be (t -  T) instead of t.    The parameter N is determined by the first of Equations (2. 34) with 
t taken at the beginning of the time interval (t -  T).    Thus 

N = • 
ira 

6D 
2h2 ff [(^♦■MS?)2] rdrdO (2.67) 

0        0 t =   T 
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Using (2. 63) and (2. 66) and (2. 50) and 2. 51),   Equation (2. 67) may be written 

(32 - a2 =i- P h2 
2 

-    0 

a 
/r   oo     oo ") 

1    ?lk-l RöjRökH0jHokj rdr + 

;a    T      OO CO        CO "I 

i     S       S      S     RnjRnk(HnjHnk + LnjLnk) > 
0       l n= 1 j= 1 k= 1 J 

rdr + 

a 
/•   r    oo       oo      oo 1    dr 
/JESS     n2RnjRnk(HnjHnk + LnjLnk) Y — 

./      I n= 1 j= 1 k= 1 Jr 
(2.68) 

dRnj in which Ri,; =   —;—- 
•> dr 

The integrals in (2.68) cannot,  unfortunately,  be readily obtained in closed form,  and 
recourse must be had to numerical integration. 

2.2.1.4   Summary of Integration Procedure 

In numerical integration it is advantageous to use nondimensional quantities.    These will be 
distinguished by placing a bar over the corresponding symbols.    Let 

"t       th 

a2   V    12(! "  v2)p* 

where p* is the mass density of material of the plate 

_     r r = — 
a 

Let s denote the number of intervals A from time zero.    Then the deflections and velocities at the end 
of the s"1 interval are given by 

S      S     Rni   U„i   cos no +    2      S     Rn;   Wni    sinnö 
j=ln=0       Js   nJs j=ln=l        Js    "Js 

00       CD 00       oo 

^s =    2      2      Rni   Vni    cosn0 +    2      2     Rn;   Zni    sinnö 
j=ln=0        Js      Js j=l n=l        Js      Js 

>■    s > 1 (2.69) 

The Rnj are defined by Equation (2. 52) and: 
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and 

Unjs = ^~ {Mnjs - gnJsG[A(s - 1)]}    sin(pnJsA) + 

•'s 

+ {"njs " gnjs
G[A(s " 1)]}   cos(PnJs

A> + gnjs
GIAs3 

Vnjs =   {Mnjs " gnJs
Ö[A(s - 1)]}    cos(pnJsA) - 

" Pnjs  -Kjs " SnJsG[A(s -  1)]}    sin (p^A) + g^GfAs] 

WnJs =ii~  Ks - hnJs6[A(S "  1)]1    Sin(Pnjs
A)l + 

+   {Lnjs " Vjg0^8 - !>]}    cos(Pnj  A> + hnj   GfAsl 

=   {Nnj.-1^.61^-1»}    COS(PnJs
A)- 

Pnjs   {Lnjs - hnJsG[A(s - 1)]}    sin(p   .  A) + H^  G[As] 

^3=1^ 

*      s>l        (2.70) 

s     k = 
.nj   rdr,   n > 0,   s > 2 

2    _ 
.nj   rdr,   n > 0,   s > 2 

",/    Unks.1Rnks.1RnjsTdr//    Rj 
■" * 0 /  0 

Mnjs = k?i  /    Vnks - 1 Rnks - 1 R-JsTd? //    R> K_ l 0 / 0 

^s = k = 1 ^    Wnjs -  1 Rnks -  1 RnJs7dF//    RnJs
Yd?'   n > °«   S > 2 

Nnjs 
= k^ ! /    Ynks . ! Rnks .  ! *njs rdr   //    R^ rdF,   n > 0,   s > 2 

and I^j  ,   Lnj.,   Mnj  ,   and Nnj    are defined by the initial conditions. 

The natural frequencies are given by 

(2.71) 

p   .    = ß   .    a   ■ s > 1 Pnjs      Pnjs    nJs 
(2.72) 
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>i- al=12 
If   oo     oo 1 

/lj?i^l       R°Js Röks 
HoJs 

Hoksj    'dr   + 

/I     f      CD OO        00 .!_._, 
4     S       S       S     R^j    Rnks (HnjsHnks + LnjsLnks)h    rdr + 

0       L n= 1 j = l k=l J 

/l   r   oo      oo     oo 
■I   s     s    s 

0       Ln=lj=lk=l 

,1   r   oo      co     co "|    dr 
+ 6   /      \    T,       S      S     n2Rn1„ Rnk„ (Hnio Hnk= + Lnja Lnks)j"  ~ <-njs 

Knks lrtnjs -n~s -Js     ""sj     r 

>  s-1 

(2.73) 

with 

dR 
R; 

°h 

Some of the above relations may be simplified by noting that if A is taken sufficiently small 

Rnjs .  i * Rnj 

/    Rnks .  ! Rnjs ?d? * ° k * J 

Equations (2. 71) then become 

Mnjs " Vnjs .  j 
n > 0 

^•U " WnJB -  1 n>° 

Nnjs * Y-Js - i 

Equation (2. 73) simplifies to 

n > 0 

>     s > 2 

Pi - «s = 12 fS£ojkHOJsHoks + 6 SSSenjk(HnJsHnks + Lnjg 1^) + 

+ 6^1VJk
n2(Hnjs

Hnks 
+ L

nJs
Lnks)" 

where 

eojk=/   Röj0Rok0^r 

enjk»/1^»^,'« 

r    R       R dr 
J ni„    nk„  7 Vjk = J      Änj 

If the right-hand side of (2. 75) is evaluated for any value of s,  then setting 

for simply supported plate 

14. 68 <j> for clamped plate 

5s -a| = 4.2 

(2.74) 

(2.75) 

(2.76) 
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one may determine (j> and thereby the values of anj    and ßnj    if these have been tabulated for various 
values of <f>.    [See note under Equation (2. 51). ]    Equation (2. 72) may then be used to determine the 
nondimensional frequencies. 

2.2.1.5   Numerical Example 

The response of a circular plate to a loading pulse will be investigated by the method 
described on the preceding page. 

A blast of short duration is best treated as an impulse.    Assuming that the blast is deliv- 
ered uniformly over the area of the plate,  let 

f(t) dt = I 
( 

ira2 J     f(t) dt = I 
0 

e being the time at which the pulse decays to zero. 

By the momentum principle,   the uniform starting velocity is 

vo^ (2.77) 

where M is the total mass of the plate. 

The plate under consideration has the following geometric and material properties 

a = 6",    E = 30X106psi,     p* = 7.34X 10"4lb   sec2 in-4 

Thus, 

a2          / 12(1 -  v2)p* .   _i 
—    ^J K_ = o.45 sec in 

The initial velocity v0,   calculated from the characteristics of the charge (used in an experiment,   the 
details of which are omitted here) and relation (2. 77) above gives an estimated initial velocity of 
893 in.   sec-1.    Thus,   the nondimensional initial velocity is 

v0 = 893 X 0.45 « 400 

The response of the plate will be analyzed on the assumption that the plate receives a uniform velocity 
of 400 while at rest. 

The parameter 

h 

Thus 

a2     V    12(1 -  v2)p* 

61. 6 t 

61.6 

This gives the relation between nondimensional time T and true time t.    The nondimensional time 
interval A will be taken as 0. 0616.    This corresponds to a true time interval of one millisecond. 

The basic equations given in Section 2. 2. 1.4 can be simplified considerably because of 
axial symmetry.    In what follows,   the bars over the nondimensional quantities will be dropped.    No 
confusion can arise as all quantities henceforth are nondimensional. 
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Equations (2. 69) become 

ws =    2    Roj1 Uojs 

ws =    Zi ROJl V0js 

s > 1 (2.78) 

From Equations (2. 70),   (2. 71) and (2. 74) 

Moi 
H°js = u°js -i =^f77sin (PoJs -jA) + H°js -1cos (PoJs -iA) 

M
ojs = Vojs .  ,  = MOJs _  x cos (poJs _  i A) - poJs _  i   HOJs _ i sin(pOJs _ i A) 

The initial conditions give 

Hojl = 0 

s > 2 

(2.79) 

MoJ! = vo /    ROJl  rdr    //    R^    rdr 
0 / 0 i 

where 

with 

Thus 

Jo(o-i   ) Jl 
Roj = J0(ajl  r) -    j-j— Io(QJi  r) 

•'I 

a;,   = 2. 222 for j = 1 
= 5.452 for j = 2 

Moj 

U°J1 = io~  Sln (P°JA) 

Vojj = Mojj  cos (PojA)     j 

(2.80) 

From Equation (2. 72) 

p   .    = a   .    0   . s > 1 P°JS        °JS 
P°JS 

(2.81) 

Using j = 1,   2 only,   Equation (2. 73) becomes 

ßl - al = 12 
HOl    / is 0 

1     / dR„ 1   dRn      dR 

+ 12 H°2„ J 

dr     / 

dISY 
-so        \   dr    / 

Assuming that the plate is simply supported 

Ps-as = 4-2<f>s 

rdr + 24 H      H J    —-—- 
°1     °2S ^        dr 

°i o, 

dr 
rdr + 

rdr s > 1 (2.82) 

Thus,   cf>    is known,   and a    and ß    may be read from charts already prepared. 

25 



2.2.2   Plastic Collapse 

LIST OF SYMBOLS 

v initial velocity given to membrane,   a constant 

U radial velocity of flat portion of membrane,  positive outward 

R radius of flat portion of membrane 

a 
R radial velocity of bending wave 

a initial radius of membrane 

h initial thickness of membrane 

p mass density of membrane material 

t time 

r radius of position of any particle in the flat portion of membrane at any time 

r0 initial radius corresponding to r 

H thickness of membrane at any time 

(rr radial stress 

&Q circumferential stress 

<r yield stress in tension 

er,   eg natural (logarithmic) strains in the radial and circumferential directions 

Z distance of central flat portion from initial plane of the diaphragm 

v Poisson's ratio 

E modulus of elasticity 

P = R/a 

|i = U/v 

n = H/h 

cZ = cr/p 

I = vt/a = Z/a 

6 = 4c/pv 

K =  [(4cr/pv2)o-(l -  v)/E]  1/Z 

In investigating this problem it was discovered that there are certain existing solutions to 
corresponding problems in underwater   shock which have been satisfactorily verified experimentally. 
While the problems of blast effects in air or of soft radiation are by no means the same as the effects 
of blast loads underwater,   they are sufficiently similar to warrant the supposition that,   as a first 
approximation,  the two problems may be studied by identical procedures. 
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The solution to the plastic collapse of a diaphragm proposed by Hudson!2- 8),   and a similar 
solution by Frederick^2- 9),   refer specifically to underwater shock.    It is proposed now to use the 
results of these analyses,   particularly that by Hudson,   to predict the collapse of plates due to blast 
effects in air.    These predictions will then be subjected to experimental checks under the test pro- 
gram at present being formulated.    If it is found that the discrepancies between theoretical and 
experimental results are sufficiently serious,   a fresh theoretical analysis will then be undertaken.    It 
is believed that this approach will lead to the greatest economy of effort in the overall program. 

2.2.2.1 Summary of the Hudson Approach 

The problem attacked by Hudson is the damage done by underwater explosions to thin metal 
circular diaphragms,   air backed,   and held rigidly at the peripheries.    The material of the diaphragm 
is supposed to be rigid-perfectly plastic.    Although Hudson has also given an approximate solution for 
a work-hardening material,   the primary difference noted is that in the work-hardening solution the 
apex of the cone (the final shape assumed by the diaphragm) is rounded off,   whereas in the perfectly 
plastic material the apex is a point.    For the present purposes,   it appears sufficient to fix attention 
on the solution for the rigid-perfectly plastic material. 

The shape assumed by the diaphragm at any time t < ts,  where ts is the total time for 
deflection or "swing time, " is that of a truncated cone as shown in Figure 2. 3.    The flat central 
region travels with a constant speed v normal to its plane,   decreasing in radius with its motion,  the 
diaphragm finally assuming the shape of a cone with a zero thickness at the apex. 

While an explicit form of the solution of the equations of motion is not given even for the 
highly idealized model proposed by Hudson,   certain special cases can be solved and information 
gleaned regarding the following: 

(1) The radius R of the bending wave (see Fig.   2. 3) as a function of time 

(2) The diaphragm profile at each instant 

(3) The thickness distribution 

(4) Displacement-time curves of particles in diaphragm 

(5) Stress and strain distributions 

(6) The center deflection as a function of v 

(7) The total time for the deformation to take place 

The solutions given by Hudson are summarized below. 

2.2.2.2 An Elementary Approximation to the Solution 

"When the acceleration of the material in the flat central portion is negligibly small through- 
out the motion,   i.e.,   U is a constant,  the solution is as follows 

(a) 

(b) 

u = =V2/2C 

R = = a - ct 

H = ■"(f) 
=)2 

Z = 
C 

(c) 

(2.83) 

(d) 

The thickness distribution in the deformed diaphragm given by (2. 83 c) shows a dimpling 
tendency at the center.    In fact,   at the last moment,  the thickness becomes zero at the center.    How- 
ever,   as the variation of the thickness with R is so rapid near R = 0,  the tiny pinhole may not be very 
apparent experimentally. 
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FIGURE 2. 3.    A SKETCH OF THE DIAPHRAGM CONFIGURATIONS 
AT TWO SUCCESSIVE INSTANTS,   t AND t+dt.    THE VARIOUS 

QUANTITIES WHICH ENTER INTO THE SEVERAL 
GEOMETRIC AND KINEMATIC RELATIONS 

ARE PORTRAYED HERE 
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Equation (2. 83 d) shows that the diaphragm assumes a conical shape whose center deflec- 
tion is proportional to the initial velocity v. 

The total time of deflection ts is given by 

ts = a/c 

2.2.2.3   The Exact Solution for a Rigid-Perfectly Plastic Material 

(2.84) 

- = P(H) a 
/^-xl\ 
\  K2 - Xj / 

-hxi-n/Ui-xz) i(X2-i)/(x2-Xl) 
2 2 L 

X ( Ll^l) 
\ KZ-x7/ 

f =^) 
-2(x1)/(x1 - x2) •> 

V K2 - xx / V K2 - x2 / 

■2(x2)/(x2-x1) 

M- 

a J     (n2 " xl) (H2 - x2> 
ßfujdp. 

(a) 

(b) 

(c) 

(2.85) 

where Xll   x2 are the smaller and larger (positive) roots respectively of the quadratic equation 

x2 - (26 - 3) x + 2 = 0 (2.86) 

It is to be noted that the initial conditions are 

P = n = 1,   fi=/c when t, = 0 

Equation (2. 85 c) is not integrable in terms of elementary functions. 

For positive values of 6,   which are the only ones of physical interest,  the roots of (2. 86) 

occur in pairs of positive values for -| + VI < 6 < co and as pairs of negative values for 0 < 6 < - - */I 

(a very small range).    For intermediate values of 6,  the roots are complex.    Hudson confines himself 

to a consideration of values of 6 > | + *Jz .    At the lower limit of this range,   corresponding to very 

large v,   or small cr, values,  we have xj = x2 = 41.    As 6 becomes very large,   ^2 > xj — 0 and 
\/I < x2 -» oo. 

A case of considerable interest arises when K
2
 coincides with one of the roots of (2. 86). 

From (2. 85), it is seen that the only possibility is for u2 itself to be constant and equal to 
KZ ■    It can then be shown that either 0 < ji = K < 1,   or u = -  K < - 1 .    The first case only is admissible, 
since the second precludes u = K initially.    Thus,  we have 

and 

0 < |JL2 = K2 = x 

6 > 3 

.-(-!)- {M)2-4"V' 
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The solution is then as follows 

R = a 1 -  KC 

2K 
vt = a 

1 - K' 

2K 

H -(f) 
4(K

2
)/(1 - K

Z
) 

U =   KV 

,      . c2      K4 + 3K2 + 2  .   , 
6 = 4— =  > 3 

v2 2K
2 

(a) 

(b) 

(c) 

(d) 

(2.87) 

For K = 1,   6 = 3 and v = (2/N/T)C,   and the deformed diaphragm is cylindrical,  i.e.,   it ruptures   com- 
pletely. 

For other allowed values of K (=[).),  this solution is quite similar to the elementary approx- 
imation presented earlier,  even quantitatively,  provided 6 is large.    For it follows then 

K « l/6
1/2 = v/2c«l,   (6» 3) 

and (2. 87) reduces to (2. 83). 

Another case of interest arises if K has any desired positive value within reason and 6 is 
very large.    Then xj is small and x2 is large.    Assume that K

2
/X2 « 1,   as is |JL

2
/X2 (since JJL

2
 varies 

from K    to xj).    Under these simplifying conditions,   it is possible to derive an approximate integral 
of (2. 85 c).    It is then found that 

x: RS  1/6,   x2 M 26 » 1 

Then providing 6 is large enough 

vt 
- = — = 2Uv/(v2 -  U2) [ 1 -  (R/a)] 

(v/c)' M?) 
^{'♦K:H (?)16(C'VT 

1/2 

(a) 

(b) 

(c) 

(2.88) 

It may be shown that this approximation is uniform over the range of U/v from K to v/2c,   and the 
range of R/a from 1 to 0; but the nearer K is to 1 the larger 6 must be.    If K = 0,   which is the case of 
a material which has strictly no elastic strain range,   the deflected shape of the diaphragm described 
by (2. 88 a) is conical near the center with a central deflection the same as that given by the elemen- 
tary theory under 2. 2.2.2. 

2.2.2.4.    General Remarks 

It may be noted that the modulus of elasticity E enters into the definition of K .    This is 
because,   although the elastic phase of the material is neglected in the specification of the deforma- 
tions,  an estimate has been made of the initial conditions at the end of the elastic range.    The time 
at which elastic phase is completed is of the order of magnitude of 3% of ts for some steels.    Thus, 
it is generally immaterial whether time is reckoned from the end of the elastic strain range or 
before it. ^_ 

Whether the above analysis,   developed with specific reference to diaphragms,  would apply 
to plates of the proportions of interest in the present research program can only be determined by 
careful experimentation and photographic records of the deformation. 
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Some additional results which may be of value in checking the theory are 

er = e0 = log (r/rQ) 

eH = log H/h 

(2.89) 
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3.    NUMERICAL ANALYSIS - CYLINDRICAL SHELLS (LINEAR-ELASTIC,  SMALL DEFLECTIONS) 

The computations utilized the following geometries and materials for the cylindrical models 

used in the experimental investigation 

a   =   6" v   =   1/3 

L   =   36" E   =   2.9 X 107 (psi) 

h   =   .036" p   =   7.36X10-4    (^f^) 

The analyses began with determining the free vibration circular frequency utilizing the values 
obtained for the frequency factor (+) in Equation (I. 13) for the appropriate values of K [ see Eqs. 
(2. 9),   (2. 16) or (2. 17)]  in the relationship 

w        =(12.3+      )1/2X104 (3-D mn     x Tmn' 

The variation of the circular frequency with the end-closure stiffness (R) for various values of m and 

n are shown in Figure 3. 20. 

The computations in all cases were directed toward obtaining pertinent radial displace- 

ments from the relation 

w(x, <,, t) =   I wmn(x, 4>) qmn(t) (3- 2> 

Values for q      (t) in Equation (3. 1) were acquired from Equation (I. 27) [ or in finite difference form, 
Eq.   (I. 28)] , 'which entailed obtaining the generalized force and generalized mass. 

3. 1   Simply Supported End-Closures 

For the generalized force [ see Eq.   (I. 27); Appendix i] ,   taking the loading as being uni- 
formly distributed along the length of the shell,  we have 

CWt>=a/ir     ["P(<M)   t    wmn<x'+)dxl     d<l> (3'3) 
0 L 0 J 

From Equation (2. 15) 

2n 
2LaC.       C 

Qmn(t) = J    P(4>. t) cos m<|>d4.        (n = 1,   3,   5,...) (3.4) 

0 

Taking into consideration the loading symmetry and using cylinder surface increments of <|> = 22. 5°, ^ 

Equation (3.4) becomes 

Q~„(t) = 
4LaC 4 

'mn* nir 
r Vs v ;i+22:5 

J PQ(t) cos m<t»d<i> +      2u    J P4.J+  11.25 (t) cosm<t>d+ 
L  0 *1 

fl80 "I 
+ J Plg0(t) cos m<(>d4> (3.5) 

168.75 J 
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The values of P,(t) for time increments of 0. 1 msec were obtained from load profiles similar to 
those shown in Figure I. 10,  Appendix I.    The time variation of Q      (t),   as acquired from Equation 
(3. 5) for Pj = 33 psi and t,   = 1 msec,  is shown in Figure 3. 1. 

From Equation (2. 15) [ and Eqs.   (2. 11)] ,  the expression for the generalized mass [ see 
Eq.   (1.27),  Appendix I]  becomes 

M mn 

LhpiraC^ 
[2 2" 1+ (K^)   + d$r)  J <3-6> 

The frequencies and the corresponding values of the terms within the brackets of Equation (3. 6) are 
given in Table 3. 1. 

In each of the computations,   only the lowest of three,   real frequencies obtained from 
Equation (I. 13) was used.     This frequency was associated with the response where the radial dis- 
placement (w) was predominant.    An indication of the contributions made by the longitudinal (u) and 
tangential (v) displacements may be found in Table 3. 1 where sample values of K,/K.  (reflecting the 
tangential displacements) and K^nir/K^L (reflecting the longitudinal displacements) are given.   Here, 
it is seen that,   although these values are greater than unity,  they are at the same time associated 
with much higher frequencies.    Since the value of the generalized mass is increased [ Eq.   (3. 6)] and 
the larger frequencies dictate smaller values of At in Equation (I. 28),  the net result is a drastic 
decrease in the values of qmn(t).    This clearly shows that the contribution of the longitudinal and 
tangential displacements is quite negligible when compared with that of the radial displacement. 

The ratio of the generalized force to the generalized mass appearing in Equations (I. 27) 
and (I. 28) is,  in accordance with Equations (3. 5) and (3. 6) 

Qmn(t) 4 ~ Yl        Y  (m = 2,3,...) A J   P<|>(t) COS m+d* 
Mmn     "nhp,2C4 ' «    ^Z      /~~N2 (n = 1, 3, 5, . . . ) <3-?> 

1 

where,  for the particular shell properties previously listed 

1.53 X 10 

nhpir 

From Equation (I. 28),   the variations of qmn(t) with time are obtained for particular values of Py and 
t+.    These are shown in Figures 3. 2 through 3. 13.    As a final step,   Equation (3. 2) is utilized to 
obtain the value of the radial displacement for each point on the cylinder's surface as defined by x 
and <j>.    In Figures 3. 2 through 3. 13 are shown the variation of w(x, 4>, t) with time for the point at 
x = L/2 and <|> = 0°.    (See also Table 3. 2) 

3. 2   Fixed End-Closures 

For cylinders with fixed boundary conditions,   the expression for the generalized force 
[ see Eqs.   (2. 13) and (3. 3)] for a load uniformly distributed along the length of the shell is 

LaC /-2lT 

Qmn(t)   =   Y^7 ßM   J P(*'t] cos m*d<,) (3- 8) 

where 

ß((c)  = r?(cosh K + cos K - 2) + r, (sin K - sinh K) 

T"y    =  sinh K - cosh K + sin K + cos K 
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TABLE 3. 2.    COMPUTED MAXIMUM RADIAL DISPLACEMENTS (COLUMNS A) AND 
CORRESPONDING TIME OF OCCURENCE (COLUMNS B) AT x = L/2, <|> = 0° 

FOR CYLINDERS WITH SIMPLY-SUPPORTED END-CLOSURES 

*+ 
Columns A Columns B 

PT (1) (2) (1) (2) 
, lz      (3) 

(psi) (msec) (inches) (inches) (msec) (msec) lb -in -msec 

17 0. 75 . 042 .035 0.9 0.85 6.3 

17 2. 5 . 150 .085 1.4 1.4 21. 2 

23 1. 0 . 078 .065 0.9 0.9 11. 5 

25 2.0 . 114 .092 1. 3 1. 3 25 

25 3. 0 . 152 . 124 1.4 1.4 37. 5 

33 1. 0 . 084 .067 1.0 1.0 16.5 - 

35 2.0 . 164 . 128 1.4 1.3 35.0 

37 1. 5 . 132 . 107 1. 3 1. 3 27. 7 

37 3.0 . 212 . 174 1.3 1.3 55. 5 

60 1. 0 . 167 . 133 1.0 1.0 30 

60 2.0 . 284 . 184 1.4 1.4 60 

60 3.0 . 325 .26 1.3 1.2 90 

(1) Neglecting contributions of u & v in Mmn 

(2) Including contributions of u & v in Mmn 

(3) P^t+72 
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r^    = sin K + sinh n 

r       - cosh K - cos K 

n'      = l/2(2n+ 1) (n = 1,2,3,...) 

It is of interest to note that the integral term in Equation (3. 8) is identical to that appearing in Equa- 
tion (3.4). Thus, the values of the generalized force for the simple and fixed support conditions are 
proportional.    The values of the terms in Equation (3. 8) are given in Table 3. 3. 

For the generalized mass,   in a first order approximation,   the longitudinal and tangential 
components of the displacement were neglected [ see Eq.   (I. 27),  Appendix I] ,   so that 

,L    .2TT 

pah  J      f       [wmn(x,(t>)]2   dxdcf. M mn 
0 0 

fc/T LhpatrC ,   , 
Mmn- 2       al(K) (3.9) 

where 

aj(ic)  = r    ( — sinh K cosh K + K - cosh K  sin K ) 

-  ^2^3 l ~Z   cos^ 2K - 2 sinh K sin K - -? cos 2/c ) 

2/1 \ 
+ r2 { y  sinh K cosh K - cosh K. sin K I 

The appropriate values of a^ic) are also given in Table 3. 3 

From Equations (3. 8) and (3. 9),  we acquire the ratio necessary for the solution of Equa- 
tion (I. 28) 

Q     (t)       r mnv ' _L     P(*)       V    f (m = 2,3,...) 
Mmn phTrC   ai(K)      Z.   J    P^t) cos m<t>d<|>        (n = 1, 3, 5, . . . ) (3-10) 

where the summation is identical to the terms within the brackets in Equation (3. 5).    The variation 
of W with time,   obtained by utilizing Equation (3. 10) in Equation (I. 28) are shown in Figures 
3. 14 through 3. 19.    The variation of the radial displacement with time (also shown in Figs.   3. 14 
through 3. 19) are obtained from Equation (3. 2),   or,   for the fixed boundary conditions 

w(x,,M,=^2     [r3(cosf -coshf)+r2    (sinhf -sinf) 

Table 3.4 contains the maximum radial displacement and corresponding times. 

cos mc(>q(t) 

(3.12) 

In order to determine the contributions of the longitudinal (u) and tangential (v) component 
of displacements, we use the expression for generalized mass appearing in Equation (I. 27) and from 
Equations (2. 11) and (2. 12) obtain 

s 
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TABLE 3. 3.    FREQUENCIES AND RELATED QUANTITIES FOR 
CYLINDRICAL SHELLS WITH FIXED END-CLOSURES 

K (4) K,K 
(4) 

m n n' (rad/sec) 
mn 

cycle/sec ß0c)(1) cMZ) 

I 
1 
1 

1 
2 
3 

1. 5 
2.5(3) 
3. 5 

50,000 

56,310 

7,960 

8,960 

220 
1.0 

120,000 

25,600 
25 X 106 

9. 7 X1011 

2 
2 

1 
2 

1. 5 
2.5<3> 

4,640 
13,660 

740 
2, 180 

220 
1.0 

25,600 
25 X 106 

9. 7 X1011 
2 3 3. 5 79,730 12,700 120,000 

3 
3 
3 

1 
2 
3 

1.5 
2.5<3> 
3. 5 

2,040 
6,010 

12,050 

325 
960 

1,920 

220 
1.0 

120,000 

25,600 
25 X 106 

9. 7 X1011 

a2(K)(4> Kl K:L 

11, 170 -.9684 .4525 
0 -.8266 .6167 

264.8 X1011 -.6338 .6172 
11,170 . 5022 .2007 

0 
264.8 X1011 

11,170 . 3335 .0874 
0 

264.8 X1011 

(5) 

51895 

32506 

28530 

(1) See Eq. 3.8 
(2) See Eq. 3. 9 
(3) Antisymmetrical 
(4) See Eq.   3. 13 

(5) QlW|_1+  W       +a2(K)V^/ 
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TABLE 3. 4.    COMPUTED MAXIMUM RADIAL DISPLACEMENTS (COLUMNS A) AND 
CORRESPONDING TIME OF OCCURENCE (COLUMNS B) AT x = L/2, <|> - 0° 

FOR CYLINDERS WITH FIXED END-CLOSURES 

17 
17 
33 
35 
37 
60 

(msec) 

0.75 
2. 5 
1. 0 
2.0 
1. 5 
2.0 

Columns A Columns B 

(1) (2). (1) (2) 

(inches) (inches) (msec) (msec) 

.030 .025 0.49 0.47 

.039 .035 0.54 0. 54 

.051 .040 0.46 0.46 

.068 .057 0.60 0.53 

.049 .040 0.43 0.48 

. 093 .076 0. 53 0.53 

(3) 
(lb -in^-msec) 

6. 3 
21. 2 
16. 5 
17. 5 
27. 7 
60 

(1) Neglecting contributions of u and v in Mmn 

(2) Including contributions of u and v in Mmn 

(3) (P!)(t+) 
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^7 {ai(K)  L1 + (^) J + ^(K)(^) } Mmn = ^C       1   al(K)      l1 + l^     \+«zMKlTT.)     t (3-13) 

where 

,  % 2 / 1 \     1 
a2(K)  = r 3 I — sinh K cosh K + cosh K  sin jci- j r,r, (cosh 2K + cos 2K) 

2/1 \ 
+ r     I — sinh K cosh K + K - cosh K sin K I 

Accordingly,  Equation (3. 10) is replaced by 

Q       {t)        r„                    ß(«c)   X    /  P+(t) cos m<t.d<^ 
nW ' 1  ^  

Mmn Ph^C 

o,U) _1+(^J    J    WK>(iqiJ 
(3. 14) 

The corresponding values for qmn(t) obtained from Equation (I. 28) and w(t) at x = L/2 and $ = 0°  are 
given in Figures 3. 14 through 3. 19. 

3. 3   Elastic End-Closures 

For cylinders with flexible,   flat-plate,   end-closures,  we take as a first order approxima- 
tion the following relation for the moment 

M       dd>       _ <j> 
=-= — +"- (3.15) 
D        dr r 

where the bar denotes properties associated with the plate.     The solution of Equation (3. 15) for <J> is 

M      r 

D   v+   1 

Setting the value of <j> at r = ä equal to one radian,   the value of stiffness S is found by 

5(1 +v> 
S   =     (for <)> I       =1  radian) 

If the flat plate has the same thickness as the cylinder wall and is made of the same material as the 
shell,   then using the specific dimensional and materials values previously listed,  we have for this 
particular case 

S = 28. 2 

and thus 

For a load uniformly distributed along the length of the shell,   the expression for the gener- 
alized mass is 
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Qmn(t)   = —- ß(K,R)   J        P(<j>,t) cosm<t>d<|> (3.16) 

where 

P(K, R) = 2 | K    [ sin ic(cosh K - 1) + sinh K(1 - cos K) + RK(COS1I K COS K - 1) 

+ R  [ sin «(cosh K - 1) - sinh K(1  - cos K)]\ 

r'   = 2K    sin K + R(fC + R)(sinh K. - cosh K + sin K + cos K) 

= 2»c2 sin K + R(K + R) ry [ See Eq.   (3. 8)] 

r y = sin K + sinh K 

r o = cosh K - cos K 

and K are the values commensurate with the value of R obtained from Figure 2. 1.     These values of K 

and the circular frequencies obtained from Figure 3. 20 are given in Table 3. 5. 

For the generalized mass,  neglecting the contributions of the longitudinal and transverse 
components of displacements,  we have 

Mmn=   LhPaiT
?
cZ   al(K,R) (3.17) 

where 

a,((c, R) = 2K  T^ (sinh K - sin K) + 2K   [3 sinh K sin K(cosh K sin K - sinh K cos K) 

- RT, (sinh K - sin K)]  + K   R[ 4 sinh K sin «(cosh K cos K -  1) - RT^l 

+ K   R  [(cosh K cos K - l)(sinh K cos K - cosh K sin K) + 8 sinh K sin K (sinh K cos K 

+ cosh K sin K) + 2rzr3 ]  + KR
3
[ RTJ+ 4 (cosh K COS K -  l)2] 

+ 3R (cosh K cos K -  l)(cosh K  sin K + sinh K COS K) 

From Equations (3. 16) and (3. 17),  the necessary ratio for the solution of Equation (I. 28) is as 
follows 

where the summation is identical to the terms within the brackets in Equation (3. 5).    The variation 
of w(x,<ji, t) at x = L/2,   and <j) = 0° with time is shown in Figures 3. 21 through 3. 23. 

51 



TABLE 3. 5.    FREQUENCIES AND RELATED QUANTITIES FOR 
CYLINDERS WITH ELASTIC END-CLOSURES 

(rad/sec) ß(<c, R)(1) al(lc'R) 

2 1 1.41ir 4,000 12,200 56.49 X 106 

3 1 1.41TT 2,100 12,200 56. 49 X 106 

(1) See Equation (3. 16) (for R = 8) 
(2) See Equation (3. 17)(for R = 8) 
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4.    DISCUSSION 

The utility of an analytical procedure is best measured in terms of its ability to yield 
meaningful and correlative quantities for a wide range of variables with a minimum of computational 
effort.    The adequacy of these computed quantities can be ascertained only in a direct comparison 
with reliable,   equivalent experimental evidence.    If the results obtained by a comparatively simple 
analytical method agree favorably with the available experimental data and if the results cover the 
range of interest for the problem at hand,   there then appears to be little reason (at least from a 
practical viewpoint) for employing another more rigorous and therefore more computationally com- 
plex solution. 

The linear-elastic method for cylindrical shells developed in Section 2.1.1 and used in the 
numerical analysis in Section 3 appears to yield significant results (over a wide range of peak over- 
pressures and positive phase durations) that agree favorably with the experimental data.     There is, 
at present,   no apparent or justifiable reason for suggesting the use of other available but neverthe- 
less more complex analytical procedures (such as that developed in Section 2. 1. 2). 

One method of compactly presenting the numerical results obtained in the preceding sec- 
tion is to chart the variation of the maximum radial displacement (in this case,   at x = L/2,   and 
4> = 0°)   with the two characteristics which distinguish each particular blast loading,   namely,  the 
peak incident overpressure (PT) and the companion positive phase duration (t+).    In Figure 4. 1,   we 
have taken the impulse (defined as Pj X t+ -^ 2) for the ordinate axis and the maximum radial deflec- 
tion for the abscissa.    On one hand,   the bands for each type of cylinder end-closure arise from 
taking the generalized mass as a function of only the radial component of displacement and on the 
other including all three displacement components (u, v and w) in computing Mmn.    In Table 4. 1 are 
comparisons of high-speed camera data obtained for specific models with the computational results 
as represented in Tables 3. 2 and 3. 4 or Figure 4. 1. 

The close agreement between the experimental and analytical results is indeed encour- 
aging  particularly in view of some of the expected deviations in the peak incident overpressure and 
positive phase duration that arise from minor differences in charge  size and shape,   differences in 
atmospheric conditions and local changes at ground zero   resulting from repeated shots.    Moreover, 
there are the assumptions used in developing the load spectrums and the purely analytical approxi- 
mations (see Appendix I)  and some of the normal uncertainties associated with the high speed photog- 
raphy data (see Appendix III)   and the models1 dimensional and materials properties.    All these fac- 
tors undoubtedly contribute to the development of a range of displacement values  rather than a 
precise and specific value for each given set of conditions.     The encouraging aspect is that the 
numerical procedure used in the preceding section,  which is comparatively simple and straight- 
forward,   does give values that are compatible with the experimental evidence and,   therefore,   of 
direct practical importance. 

55 



0-2O        0.Z4- <.3Z       0-36. 0^4.       C.49.       o.S'i, 

A<fAX/fistL/Kt      /2AO /AL       OlS&CACLlZA-IE^Wr        AT    X =   ^ ,  ^   = ° ° (f/t^'c^Cir/ 

FIGURE 4. 1.    VARIATION OF MAXIMUM RADIAL DISPLACEMENT WITH ONE 
HALF OF PRODUCT OF PEAK INCIDENT OVERPRESSURE AND 

POSITIVE PHASE DURATION 

56 



TABLE 4. 1.    COMPARISON OF EXPERIMENTAL (HIGH-SPEED PHOTOGRAPHY) 
AND COMPUTED (LINEAR-ELASTIC,  SMALL DEFLECTION THEORY) 

RADIAL DISPLACEMENTS FOR CYLINDRICAL'SHELLS 

Shot Boundary- PT *+ (PjXt.^ 
Computed Experim 

(5) 
entail 

Model (5) (6) (6) 

No. No. Restraint (psi) (msec) (lb - in   - msec) (inches) (msec) (inches) (msec) 

CA3 Dl Fixed 15 (2) 6.3 (4) 47 .064 -  .078 (7) - .04 0.7 

CA3 D2 19 (2) 5. 5 (4) 41 .060 - .072 (7) - .07 1.5 

CA3 D3 42 (2) 3.8 (4) 80 .098 - .118 (7) - . 12 0.8 

CB2 Gl s. s. 20 (1) 2.4(3) 24 .084 - .116 (7) 1.4 (10) . 12 1.3 

CB2 G2 16 (1) 2.3 (3) 19 .072 - .095 (7) 1.4 (10) . 11 1. 5 

CB2 G3 17 (1) 2.5(3) 21. 5 .085 - .105 (8) 1.4(8) . 11 1.4 

CB2 G4 17 (2) 2.9(3) 24. 5 .088 - .118 (7) 1.4 (10) . 13 1.3 

CB2 HI 25 (2) 5.1 (3) 64 .194 - .248 (7) - .20 2.0 

CB3 H3 23 (1) 4.5(3) 52 .164 - .216(7) - . 15 1.5 

CB3 H4 53 (1) 3.9 (3) 100 .284 - .366 (8) 1.4(8) .30 2.0 

(1) From Table III. 1,   Appendix III 
(2) From Figure III. 3,  Appendix III 
(3) From Table III. 2,   Appendix III 
(4) Computed 
(5) Maximum (inward) radial displacement at x = L/2,   <)> 
(6) Time of occurrence of displacement 
(7) From Figure 4. 1 
(8) From Table 3.2 or computed 
(9) From Figures III. 4 through III. 13,  Appendix III 

(10) Estimates 

= 0' 
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APPENDIX I 

METHODS OF ANALYSIS (LINEAR-ELASTIC, 
SMALL DEFLECTION THEORY) 

LIST OF SYMBOLS 

A, B, C Constant coefficients (maximum amplitudes of component vibrations) 

3 EhJ 

12(1 -  v2) 

E Elastic modulus 

paZ(l - v2) 

Eh 

1- v2 

L Cylinder length 

M Bending moment of section 

M Generalized mass mn 

N Stress resultant 

Q Generalized force 
mn 

T Kinetic energy 

V Potential (strain) energy 

a Mean cylinder radius 

h Cylinder wall thickness 

i = NTT 

j Subscript 

v,2 

12a 

m Number of circumferential waves 

q Generalized coordinate 

s =          a<)> 

t Time 

U) Vj w Longitudinal,  tangential and radial components of displacements 

x, <j), z Axial,   tangential,   and radial coordinates 
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LIST OF SYMBOLS (Cont'd) 

a = X/L 

y Shear strain 

e Axial strain 

v Poisson's ratio 

Density 
(^) 

i 2 1  -  v 2   2 

Circular frequency 
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I. 1   FREQUENCY AND DISPLACEMENT EQUATIONS 

The development of the necessary free-vibration equations follows the format estab- 
lished by Yu. (!• 1)    The solution begins with the following equations of motion( I- 2) based on the 
assumption that N,     = N      =0.    (See Figs.  I. 1 and I. 2 for notation. ) r <pr xr 

3N 3N, xx (px 
a ——— H——— - pahu   =   0 3x 3<|) 

3N   ,      9N 
X(p 

3x + -^+pahv   =   0 

a2Mx^    a2**^   a^   x Q2M^ 

)x2   T axa<j)   T 3xa<!> T a    a<()2 
pahw 

(1.1) 

Based on the condition that a»z (so that a + z 5 a) and the following equations for strains as 
functions of displacements 

3u 8Zw 
ex   '   äx" " Z »„2 

Tx<t. 

ax^ 

i  3v   w    z   a w 
I   8?    "ä "I2" 8<))2 

8v     1   3v z    3  w 
3x     a   3<|> a  ax3(|> 

we obtain the following differential equations for the displacements 

(1.2) 

V4u + I 

1     33w        v   33w       F 

3x3y2 " a  3x3       a2 

92    fs - v    2 2v 

a^L1^ I(rr 
a_w 

v)   3x 

a2( 

2F    32u   | 

1 - v)    3t2 J 
=   0 (1.3) 

4        2 + v      33w        1_   33w 
a       3x23y     a   3y3 

F    32    f3 - v   ^2 

^37|_~ 

a( 

_2  £w 2F 32v 1 
1 - v)   3y       a2(1 _ v)    8t2 J 

(1.4) 
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62 



,        2   Q4 
D    8         1 - v     9  w 
-V w + = 4 
K 3T       9x4 

F     92      (7 3 - v     2 2F       3   \    /_F   9_w 

VaT"     lA1"7^    ~a2(l-v)9t2/   Va2   8t2 

w       D V4w J    - V4 

a^(l -v) 

/  2   9   w      9   WY1 (1.5) 

where 

where 

y    = a<} 

F   = 

D 

K 

pa2(l - v2) 
E 

Eh3 

12(1 - v2) 

Eh 

1 - v' 

The space and time dependent forms of the displacement equations are taken to be 

ZXCL * Aje     J cos m4> sin u^^t 

j 

ZXCL* Bje     J sin mc|> sin Umn* 

j 

Cje     J cos m<|> sin u^t 

(j = 1,2, ...,8) 

(1.6) 

(1.7) 

(1.8) 

Qj   =    L 

m   =   number of circumferential waves 
(2m = number of circumferential nodes) 

Substituting Equations (I. 6),   (1.7),   and (1.8) into Equations (I. 3),   (1,4),   and (I. 5),  we have 

♦ m X   Cj.»i{^ - n.2 [» - (2 ♦ v) (£) ]}    =■   0 (1.9) 
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(I. 10) 

I   Cje-j   [2^n -  ^n|
2 + (3  - v)m2   L1   " O Jj 

+ Vnjd  - *)™2 L1 - (If) J + t1  "  ^ L1  -    taw J 

H£f]}-"->-3 [>-(£)] 
v)(l  - v^aa^J      =   0 

+ (3 - v)kmc 

(I. 11) 

where 

1  -  v 2       2 
P"mna rmn E        f~mn 

, 2 

12a^ 

Equations (1.9),   (I. 10),   and (I. 11) are simplified by assuming that the shell wall 

thickness (a) and length (L) are such that 

2 .    ,  .2 
a\; 

(£) ■•(£)«>■• 
This simplification permits Equations (1.6),   (1.7),   and (I. 8) to be rewritten as follows 

K3 x    • umn(x, <|>, t)    =    j^— cos mcj> sm u>r at £ ajCj. 

C,eXQJ 
K2 y 

vmn^x,<')' V    =    K~  sin m* Sm "mn1^0] 
1 J 

wmn(x, (j>, t) =    cos mcj) sin u^t 2, CjeX  J 

j 

-     (j = l,2,3,4) (1.12) 
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where 

Kl    =    2+mn - (3 - v) Vn™2 + d " v>m4 

K2    =   m[m2(l  -  v) - 2^mn] 

K,    =   a[2+mnv + (1  - v) m2] 

From Equation (I. 11),  we also obtain the following frequency equation 

2^mn " d2 + (3 -  V)™Z + 2km4l   + Vnll1  "  v>m2 + t1  "  v> m4 

+ (3 - v)km6]   - (1  - v)km8 - (1 - v)(l - v2)(aaj)4   =   0 (j = l,2,3,4) (1.13) 

The solution of Equation (I. 13) for +mn (and therefore the frequency comn) depends 
on obtaining the appropriate values of a-(j = 1,2,3,4),  which reflect the shell's end-closure 
boundary condition.    For the fourth degree equation,   the expected values of a.j would be of the 
form 

K K IK IK 
-,    a3   =   —   and   a4   -    -   -j7 

where i = \T^T   and  K  is a real number containing a term reflecting the axial mode shape. 

I. 2   Lagrangian Equations of Motion 

The development of the Lagrangian equations of motion necessary in the numerical 
analyses for the response of cylindrical shells to impulsive loading begins with the general dis- 
placement equations 

u(x,<M)   =     2. umn(x, <)), t) 

v(x,<M)    =     A vmn(x, <|), t) 

w(x, 4>, t)   =     £-• wmn(x, $, t) 

(I. 14) 

Utilizing Equations (I. 12),   these may be rewritten in terms of generalized coordinates 

u(x,<M) =     ^"mn^'+IVW 

v(x, <(), t) =     L. vmn(x, <t>)qmn(t) 

w(x, <)>, t) =     L, wmn(x, <t>)qmn(t) 

(1.15) 
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The expression for the kinetic energy is 

L       2u , h/2 /L       2u . h/<2 ? zl 
J f [ü(x,<M)]     + lv(x,<M)]    +[w(x, it)]   I adxd<t>dZ (1.16) 

Since u(x, cf», t)   =     X umn(x, <|>)qmn(t) (and similarly for v and w),   Equation (I. 16) may 

be rewritten as 

.L   _2ir 

0       0«- 

+ [wmn(x, +)qmn(t)] 2 + umn(x, flu^x, +)qmn(t)qij(t) 

+ vmn(x,<|»)vij(x,+)qmn(t)qij(t) + wmn(x, ^(x, 4>)qmn(t)qij(t)J  dxd<|> (I.") 

where mn 4 ij 

Since the generalized coordinates are the principal or normal coordinates,  the corre- 
sponding vibrations are the principal modes of vibration,   and the products of the velocities in 
Equation (I. 17) vanish.    That is,   from Equations (I. 12),   any one of the last three terms in 
Equations (I. 17) would be of the form 

x=L 

^mn^ij Aij     / Fm<x)Fi<x> 
x=0 U = o 

/ Gn(<t>)Gj(4.)d<t. dx 

where G (4>) = sin n<j>  or   cos n<|>,   and Gj(<j>) = sin j<t>  or   cos j<|). 

Thus 

4> = 2TT 

$ = 0 
/ Gn(4>)Gj(<t»)d^   =   0 (for n 4 j) 

and Equation (I. 17) becomes 

T    =   ^ Z  [VnWl2[V + *mn + ^mJ 
(1.18) 

where 

-L   _2TT 

/     /      [umn(x,<f)]2dxd* 
0       0 

(1.19) 

and similarly for v        and w. mn mn- 
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The expression for the potential (strain) energy in terms of the derivative of the dis- 
placement components and the generalized coordinates may be obtained by utilizing Equations (I. 2) 
and (I. 15) in the following 

^-ZT      Iff 4 + 4 + *vexe+ + -T- 4X I  dxd^dz (1.20) 
t1 - v  )     -h/2 0      0 L T J 

Since terms containing products of the generalized coordinates vanish,   Equation (I. 20) 
may be rewritten as follows 

Ea 
V   =     

2(1 - v2) 
A [qmn(t)] 2   U /     /      F<u' v' w)dxd<(> 

Loo 

h3  rL r27r 1 
+ -T J     J       G(u, v, w)dxd<j> 

0      0 J 
(1.21) 

where F(u, v, w) and G(u,v,w) denote a collection of terms involving the partial derivatives of 
u      (x, <t>),  v      (x, <j>),   and w      (x, $) with respect to x and <j>. 

From Equation (I. 21),  we have 

äqf^tf   = H(u'v'w)q-W (L22) 

where H(u, v, w) are merely the combined constant and integral terms. 

For Lagrange's equations,  we have 

d 3T 

[aq dt laW*> 

From Equation (I. 20) 

3T 8V        _ ,. 
3q       (t)  +    3q       (t)    "    "mnW 

(1.23) 

^^    =   0 U-24) 
9q    (t) ^mnx ' 

_d r 8T 1 
dt [aqmn(t)J 8qmn(t) I      = P^W'^n + *mn + ^miJ (L 25) 

Introducing Equations (I. 22),   (I. 24),   and (I. 25) into Equation (I. 22) 

Paht*mn + *mn + *m»l U" + H<U> V' W> W*»   =   °nmW (L 26) 
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Expressing Equation (I. 26) in a more convenient form,  we have 

2                           Qm„C) 
W + "WWW   =     M  {L 27) 

where 

Mmn   =    pah[u__ + v___ + w      1 (generalized mass) mn r       L   mn mn mnJ ve> ' 

2 H(u, v, w) 
W =     T7  mn M^^ mn 

Q      (t)   =   Generalized force mn   ' 

.L   .2ir 

/    /     P(x, <|>, t) wmn (x, <|>) adxd()> 

0      0 

For the numerical solution of Equation (I. 27),   the method of finite differences was 

used,   and,   taking the second central differences,  we have 

..       , Wtr) " ^mn^i) + W'f) 
Wti) =  —z  

Q      (t.) 
mn1 i' 2,2 2, 

1mn<tp)    =   -M  (At)    + [2 " "m^tri «W^J - qmn(t|) d- 28) 
mn 

where 

t„   =   t- + At r l 

t„   •=   t. - At 

I. 3   Development of Load Spectrums 

In obtaining the expression for the generalized force in Equation (I. 27),  use was made 

of the loading information for cylindrical shells contained in References I. 3 and I. 4,   as well as 
other publications.    Basically,  the time variation of the loading along any one element of the 
cylinder can be considered of the form shown in Figure  I. 3 or I. 4,   the former utilizing the infor- 
mation from Reference I. 3,   and the latter from Reference I. 4. 

In both cases,   time is measured from the instant the shock front strikes the leading 
edge (element at <{> = 0°) of the cylinder.    Again,  both forms include the arrival time (ta) for each 
particular cylinder element,  the duration of the diffraction loading phase (tj^) and the positive 
phase duration (t+).    The drag phase (for { > tß) is given by 

P   =    PI(t) + Cd(<f,)q(t) (1.29) 
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where,  for the time increment 0 < t < t+ measured chronologically from t  ,  the relationship for 
A s}c —      — a. 

Pj (t) and q(t) is given in Figure I. 5,  and C^tfO is the drag coefficient for the particular cylinder 
element under consideration.    For the loading shown in Figure I. 3,   the drag coefficient C^«))) is 
obtained from Figure 6. 82b,  page 272,   Reference I. 3; for the loading shown in-Figure I. 4,   C(j(<t>) 
is found from the curve reproduced in Figure I. 6. 

The essential difference between the pressure profiles shown in Figures I. 3 and I. 4 lies 
in the diffraction phase.    Since the pressure profile in Figure I. 4 represented a more realistic 
loading condition,   there was reason to tend towards this approach.     Taking into acccount the experi- 
mental model's dimensional ratios (L/D),   the crossover times (D/U) and the anticipated (as well as 
experimentally recorded) durations,   there appeared to be adequate aerodynamic similitude to 
justify using the experimental curves in Reference I. 4 in determining the appropriate values of 
P^,  t^  and tp for this investigation's loadings.    Moreover,   the maximum deformations were found 
to occur at times approximately equal to or less than the diffraction phase duration (tp)-    This 
meant that the diffraction phase constituted the major (and,   in some cases,  the entire) deforma- 
tional loading. 

The curves used in determining the significant values of time and loading required to 
define the load spectrum in Figure I. 4 are given in Figures I. 7 through 1.9.    The basic,  computa- 
tional procedure was as follows:   the values of the peak incident overpressure (Pj) and positive 
phase duration (t+) were obtained from Tables III. 1 and III. 2.    The variation of the incident over- 
pressure and the dynamic pressure (see Fig.  I. 5) were found from the following relations 

q(f> = *d   [0-fJ exp(-r+)J <I31> 

where 
1_ .- .    ' 

2. 5Pj .„S- 
qd   =    7P    +PT 

(psi) 

o I 

P     =   Ambient pressure o r 

Next,   the crossover time (D/U) was computed,  where 

1/2 

(    6M U   =    cll + — J (ft per sec) (1.32) 

Kov.y   o/     i ("o ;    r\    u,    ~7f 

C0 =    Ambient sound velocity (ft per sec) 

From Figures I. 7 and I. 8,  the appropriate values for t  ,   t- and tß were obtained for each element 
in the cylinder's surface.    A numerical analysis to determine the optimum number of elements to 
be considered showed that for increments of A<j> =  10°,   15° or 22. 5°,   only minor differences 
existed in the final numerical results.    Thus,  in all subsequent computations,  the elements con- 
sidered were those at <(> = 0°,   22.5°,   45°,   ...,   180°. 

The values of Rj(<|>) for each element were obtained from Figure I. 9.    The appropriate 
value of Pj corresponding to the time t^ was determined from Equation (I. 30) (where t = t^) or 
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from Pj(t) curves such as are shown in Figure I. 5.    The critical pressures were then found for 
each element 

P.   =   RjWPjttj) 

Typical values for critical pressures and times are given in Table I. 1; the corresponding 
load spectrums are shown in Figure I. 10. 
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TABLE11. 1.    CRITICAL TIMES AND PRESSURES (Pj = 33 psi, 
t+ = 1 msec) D/U = 0. 53 msec 

t 
*a *1 

Pl h P2 h P3 *D 

msec msec psi 

85 

msec 

. 32 

psi 

18 

msec psi 

21 

msec 

0 0 .08 .51 1.7 

22. 5 .02 . 10 70 .37 14 .65 9 1.7 

45.0 .07 . 11 55 .41 13 .77 3 1.8 

67. 5 .16 . 12 39 .48 11 .97 0 2.2 

90.0 .27 . 15 24 . 52 10 1. 1 0 3.0 

112. 5 .37 . 16 15 . 58 8 1.3 0 3.3 

135.0 .45 .19 12 .62 7 1. 5 0 3.3 

157.5 .51 .20 16 .68 5 1.6 0 3.0 

180.0 .53 .21 25 .74 4 1.8 0 2.7 
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APPENDIX U 

EXPERIMENTAL PROGRAM 

II. 1.    OBJECTIVES 

It was deemed advisable to undertake a limited experimental program which would provide 
data to test the adequacy of the analytical procedures.    Knowing that the analytical results would be 
in the form of predicted displacements,   an experimental technique was evolved for obtaining records 
of the response of cylindrical shells or flat plates to known blast loadings. 

II. 2.    MODEL DESIGN 

II. 2.1    Cylindrical Shells 

All the cylindrical shell models had the same overall nominal dimensions:   diameter- 12", 
length - 36",   shell wall thickness - 0. 036".    The three basic configurations differed with respect to 
the end-closures and the related shell boundary condition.    For the Type CA specimen (Figure II. 2), 
the shell was welded to a 1/2" thick end plate so as to closely approximate a shell with fixed-end 
conditions.    The end-closures for the Type CB specimen simulated a shell with a simply-supported 
boundary condition (Figure II. 3).    Type CC shell models use end plates of the same nominal thick- 
ness as the shell (0. 036").    These plates were welded to the shell as is shown in Figure II. 1.    The 
Type CC models provided an elastic boundary and were used to demonstrate the effect of end 
restraints of flat plate end-closures. 

Within each CB type model, a scribe plate was mounted at mid-length on the three support 
rods (see Figure II. 3). Four, spring-loaded styli, supported on the scribe plate and bearing against 
the shell wall, were used to record the deflection at mid-plane points on the 0°, 90°, 180°, and 270° 
elements of cylinder (0° denoting the blast side of the cylinder). A black longitudinal and circumfer- 
ential grid on one-inch spacing was painted on the yellow surfaces of the models used in series D, A, 
G and H. 

II. 2. 2.    Circular Flat Plates 

The test fixture used to support the circular flat plates is shown in Figure II. 4.    As shown 
in the drawing,  the plate is simply supported at the boundary; for the fixed boundary condition,   an 
oversized plate was used and clamped between the inner pipe and the outer ring.    In order to evaluate 
the effects of membrane and beam action,   0. 0312" and 0. 0598" thick plates were tested.    White 
radial lines at 45° were painted on blue plate surfaces. 

II. 3.    INSTRUMENTATION 

Instrumentation consisted of synchronized,   high-speed photography to record the cylinders1 

dynamic response,   mechanical styli recordings of maximum deformations,   and a quartz transducer 
system to record overpressures and positive phase durations.    Each model was covered by one or 
two high-speed cameras with film speeds from 3, 000 to 5, 000 frames per second.    A sequence cir- 
cuit was constructed to synchronize the detonation and camera action so that the initial impact of the 
shock wave on the model would occur when the cameras had obtained their maximum speed. 

Two quartz transducers were flush-mounted in a 18" X 24" steel surface plate.    An adap- 
tor,   consisting of a double brass fitting separated by a viscous potting material,   was constructed to 
minimize ground acceleration effects in the pickup.    The transducers were placed at ground level at 
radial distances from ground zero equal to those from ground zero to the model.    The transducers' 
outputs were fed through amplifier-calibrators to an oscilloscope and recorded by oscillograph 
cameras. 

II. 4.    TEST PROGRAM 

A total of nineteen charges in nine series was detonated. The charges used and the cylin- 
drical shell models and flat plates exposed in each shot are given in Table II. 1.    Each cylindrical 
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shell model was suspended with nylon cords; the position and orientation of each model relative to 
ground zero are shown in Figures II. 5 through II. 8; the controlling distances are given in Table II. 1. 

Shot series A through C were used to obtain qualitative information on the deformational 
response of the cylindrical shells as influenced by such factors as the distance and orientation of 
models with respect to ground zero.    In particular,   the tests were used to determine the modes of 
failure (in the form of permanent deformation or fracture) as related to estimated overpressure. 

The tests using 5 lb of flaked TNT (Series E and G) were conducted on Southwest Research 
Institute grounds for the purpose of checking out the equipment and instrumentation.    In Series G, the 
distance between the model and the charge was 10 feet,   and,   at this distance,   it was possible to 
photograph small (but measurable) elastic deformations and mode shapes.    The ground zero-to- 
model distances for the 30-lb shots at Camp Bullis varied from 26 feet to 15 feet; each series of 
shots terminated with failure of the model in the form of large,   permanent deformations.    (See 
Figures II. 9 through II. 17. ) 
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FIGURE II. 11.    SLIGHT REDUCTION IN SHELL DIAMETER 
IN MODEL CC2 AFTER SHOT Bl 

FIGURE II. 12.    SHELL AND END PLATES PERMANENT 
DEFORMATIONS IN MODEL CC2 AFTER SHOT B2 
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FIGURE II. 13.    SHELL AND END PLATE PERMANENT 
DEFORMATIONS IN MODEL CC3 AFTER SHOT Cl 
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FIGURE II. 15.    END PLATE DEFORMATION IN MODEL CC5 
AFTER SHOT 8 

FIGURE II. 16.    SHELL DEFORMATION IN MODEL CA2 
AFTER SHOT 7 
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APPENDIX III 

EXPERIMENTAL RESULTS 

DJ. 1.    PRESSURE-TIME MEASUREMENTS 

In developing the experimental portion of the program,   consideration was given to creating 
blast phenomena with conventional,   chemical high explosives which,  when applied in an analysis pro- 
cedure to scaled models of missile bodies,  would provide a discernible equivalence for the nuclear 
weapon effects on actual missile structures.    To this end,   full use was made of the information avail- 
able in Reference III. 1,   as well as other supporting publications containing information on HE explo- 
sions. 

The peak shock overpressure,  as related to distance,  plays a leading role in explosion- 
damage correlations.    Selection of the controlling parameters for the HE blast phenomena,   there- 
fore,  began with the relation shown in Figure III. 1 between the peak overpressure in free air and 
scaled (radial) range as proposed by the Kirkwood-Brinkley theorylHI. 2) an(j substantiated by the 
experimental evidence of Fisher"-'--'-- ') and Weibull"^-*'.    In this relation,  the scaled range is 
defined as 

\ = 
(W)!/3 

where 

R is the radius (feet) 

W is the weight (yield) (pounds) 

Since the HE explosions would take place on or near the ground,   other blast phenomena 
associated with surface or near surface bursts were taken into account.    Foremost among these 
considerations was the ground reflection of the blast wave and the subsequent coalescence of the 
incident and reflected waves in the development of the Mach stem. 

In accordance with one definition, let Wj be the size of burst exploded over a reflector at 
a height of burst equal to hR. At a slant ränge of RR > 2 hR (thereby placing the point in question in 
the far Mach region), the reflected peak overpressure is PR. For a free-air burst of Wj, the inci- 
dent (or free-air) peak overpressure at a range of Rj equal to RR would be Pj. Let the yield of Wj 
be such that, at a range of Rj = RR, the incident and reflected peak overpressures are equal. Since 
the scaled slant ranges are 

RR v. -       RI XR =  7-n, KI 
(WR)

1
/
3 (Wj)!/3 

by definition 

Rjr (reflectionfactor) - 1!L   l^\ 
WR      \\i   ) 

Accordingly, for a given WR at height of burst hR, one would expect at a range of RR a reflected 
peak overpressure in the Mach reflection region equal to that obtained from a free-air burst with 
a yield of RpWj. 

An indication of the reflection factor to be expected in the Mach reflection was obtained 
from the information presented in Figure III. 2 relating the reflection factor for TNT to the scaled 
height of burst for a particular (and not necessarily ideal) reflecting surface.    This and the additional 
information for pentolite and the related data for nuclear bursts indicated that scaled heights of 
bursts could be selected such that the reflection factor in the far Mach region would be between 0,5 
and 2.0,   approximately.    In Figure III. 1 are shown the R   W   curves for these two extremes relating 
the reflected peak overpressure with the scaled slant range.    The curves in Figure III. 3 provide the 
same information for a nonscaled range. 
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Since the above method of predicting the reflected peak overpressure was limited to the far 
Mach region and in order to avoid having the missile model experience two pressure peaks in the 
regular reflection region,   the charge size,   height of burst and the ground range were selected such 
that the triple point would be above the uppermost portion of any model,   regardless of its orientation. 

The information in the literature provided the necessary relation between the Mach stem 
height and the range for various heights of burst.    From prior qualitative tests,   it was known that the 
missile models would sustain damage from a 30-lb charge of TNT at a ground range of 1 5 to 26 feet, 
depending on the orientation and construction of the model itself.    The model positioned with its lon- 
gitudinal axis perpendicular to ground represented the most severe,   triple-point height requirement. 
For this arrangement and a ground range of 1 2 feet,   the scaled height of burst would be limited to a 
scaled HOB of 0. 8 or less or,   for a charge weight of 30 lb of TNT,   a burst elevation above ground of 
2-1/2 feet or less.    Referring to Figure III. 2,   this height of burst would provide a reflection factor 
of approximately 1.8 and therefore ground reflection,   peak overpressures at the model of from 
approximately 15 to 100 psi depending on the ground range. 

It was recognized that such factors as the actual ground reflection characteristics at the test 
site,   the type of charge and the charge shape would all somewhat influence the blast phenomena. 
Accordingly,   pressure measuring devices were used to determine,   among other things,   the extent 
of the deviation (if any) of the predicted peak overpressure.    (See Appendix II. ) 

The results of these pressure readings (shown as points superimposed on the curves shown 
in Figures III. landIII.2) are especially encouraging particularly in view of the uncertainties 
normally associated with blast phenomena measurements.    It is seen that with the exception of the 
30-lb,   H4 shot and the 5-lb,   El and;E2 shots,   a ground reflection factor of between 1. 6 and 1. 7 for 
the 30-lb shots and of 0. 7 for the 5-lb shots is quite valid.     The values for Rp were used for predict- 
ing the peak reflected overpressures in those tests where pressure measurements were not obtained. 
Table III. 1  summarizes the pertinent peak overpressure and reflection factor data. 

In addition to the overpressures,   the other blast parameters which significantly influence the 
extent to which the model is damaged are the positive phase duration and the positive impulse.    The 
time of arrival of the blast wave is of importance in the establishment and interpretation of the 
model's high-speed photography data. 

.Available free-air curves for arrival time,   positive phase duration and positive impulse for 
TNT provided suitable approximations for adjusting the pressure recording and high-speed photo- 
graphy equipment.    Table III. 2 offers a comparison between measured and predicted data.    A sum- 
mary of the pressure data is given in Table III. 3. 

III. 2.    HIGH-SPEED PHOTOGRAPHY DATA 

The variation of the radial displacement at x = L/2, cj> = 0° with time (where t = 0 denotes the 
arrival of the blast wave at the cylinder's leading edge) is  shown in Figures III. 4 through III. 13. 
Each of the curves was fitted to points obtained from either prints or projections of each individual 
frame. 

The curves in Figures III. 8 and III. 10 need some additional interpretation.    The model (CB2) 
used in shot HI had been previously subjected to four,   5-lb explosions in shot series G.    These 
smaller (but repeated exposures) resulted in a slight permanent set at the cylinder's top,   leading 
edge adjacent to the grooved (for simple support) end plates.    In the subsequent shot HI,   this edge 
of the shell moved out of the groove at approximately 1. 7 msec (see Figure III. 8) after the arrival 
of the blast wave.    In so doing,   the  subsequent response of the shell was no longer that of a cylinder 
with simple supports at each boundary.    However,   prior to that time,   the shell's response followed 
the theoretically predicted displacement pattern. 

The same mode of failure was experienced by Model CB3 (Figure III. 10) in shot H4.    Here, 
the shell's leading edge at the top end-plate began to move out of the groove at approximately 1. 5 
msec.    Although the shell did subsequently return to zero displacement at x = L/2,   cj> = 0°,   the condi- 
tion of simple support was no longer in effect.    For this reason,   the simple-support response was 
limited to that portion of the displacement curve prior to 1. 5 msec. 
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TABLE III. 1. PEAK OVERPRESSURE IN MACH REFLECTION 
REGION (EXPERIMENTAL DATA) 

Ground'-'' 
Shot Charge*1) 

(lb) 

5 

HOB(
2

) 
(ft) 

0. 33 

Range 
(ft) 

(A) (B) 
RF 

1. 32 

(C) 

25. 1 

(D) 

3-5.0 

No. RF = 

12. 

d. 5 

8 

RF = 2.0 

33.0 

(E) 

El 10 2.0 

E2 5 0. 33 10 12. 8 33.0 1 32 25. 1 29. 3 1. 6 
E3 5 0. 33 10 12. 8 33.0 1 32 25. 1 18. 8 0.9 

Fl 30 1. 5 20 10. 5 27. 2 1 89 27. 0 23.0 1. 6 
F2 30 1. 5 16 16. 3 47.0 1 89 46.4 41. 0 1. 7 

Gl 5 0. 33 10 12. 8 33.0 1 32 25. 1 19. 7 0.9 
G2 5 0. 33 10 12. 8 33.0 1 32 25. 1 16. 1 0. 7 
G3 5 0. 33 10 12. 8 33.0 1 32 25. 1 16. 5 0. 7 
G4 5 0. 33 10 12. 8 33.0 1 32 25. 1 N. A. N. A. 

H2 30 2. 5 20 10. 5 27. 2 1 89 27.0 24. 6 0.7 

H3 30 2. 5 20 10. 5 27.2 1 89 27.0 23.0 1. 6 
H4 30 2. 5 15 18. 5 55.9 1 89 54.0 53.0 1. 6 

Jl 5 0 33 10 12. 8 33.0 1 32 25. 1 13. 1 0.6 

J2 5 0. 33 10 12. 8 33.0 1 32 25. 1 16. 2 0. 7 
J3 5 0. 33 5 39 2 140.0 1 32 102.0 64. 0 0. 7 

N. A. Not available. 
(1) Flaked TNT. 
(2) Height of burst. 
(3) Distance from ground zero to model and/or pressure pickup. 
(A) Estimated range of peak overpressure in Mach reflection region (psi); 

Kirkwood-Brinkley theory -  see Figures III. 1 and III. 3. 
(B) Reflection factor for hard clay surface as function of HOB (see Figure III. 2). 
(C) Peak overpressure based on Ry- from Column (B). 
(D) Experimentally measured peak overpressure (psi). 
(E) Adjusted reflection factor based on measured peak overpressure. 
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TABLE III. 2.    TIME OF ARRIVAL,   POSITIVE PHASE DURATION 
IN MACH REFLECTION REGION (EXPERIMENTAL DATA) 

Shot Charge*1) HOB<2) Ground*   ' (A) (B) (C) (D) 

No. (lb) (ft) 

2.5 

Range (ft) 

26 

(msec) 

11.5 

(msec) 

N.A. 

(msec) (msec) 

Dl 30 _ _ - 
D2 30 2.5 22 9.3 7.9   — 
D3 30 2.5 16 5.0 5.3   — 

El 5 0.25 10 3.4 N.A. 2.6 2.7 

E2 5 0.25 10 3.4 N.A. 2.6 2.8 

E3 5 0.25 10 3.4 N.A. 2.6 2.2 

Fl 30 1.5 20 7.4 N.A. 5. 1 4.2 

F2 30 1.5 16 4.9 N.A. 4.0 4.3 

Gl 5 0.25 10 3.4 4.5 2.6 2.4 
G2 5 0.25 10 3.4 3.9 2.6 2.3 

G3 5 0.25 10 3.4 3.9 2.6 2.5 

G4 5 0.25 10 3.4 3.8 2.6 2.7 

HI 30 2.5 20 7.4 7. 1 5. 1 N.A. 

H2 30 2.5 20 7.4 N.A. 5. 1 6.0 

H3 30 2.5 20 7.4 N.A. 5. 1 »4.5 

H4 30 2.5 15 3. 7 N.A. 3.9 N.A. 

Jl 5 0.25 10 3.4 N.A. 2.6 3. 1 

J2 5 0.25 10 3.4 N.A. 2.6 3.4 

J3 5 0.25 5 1.2 N.A. 1.6 1. 1 

N.A. Not available. 

(1) Flaked TNT. 
(2) Height of burst 
(3) Distance from ground zero to model and/or pressure pickup. 
(A) Estimated time of arrival - ta 
(B) Recorded time of; irrival - ta (from high speed photography). 

(C) Estimated positive phase duration - t+ 

(D) Recorded positive phase duration - t+ 
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TABLE III. 3.    SUMMARY OF PEAK INCIDENT OVERPRESSURES 
AND POSITIVE PHASE DURATIONS 

(1) E:    end-on loading; S:    side-on 
loading; O:    oblique loading 

(2) Peak incident overpressure 

(3) Positive phase duration 

(4) E - elastic; F - fixed; 
S -  simple support 

(5) Experimental - See 
Table HI. 1 or III. 2 

Model 
Shot 
No. 

CC1 Al 
A2 
A3 
Bl 
B2 

' ■ B3 
CC2 Al 

A2 
A3 
Bl 

' ■ B2 
CC3 Cl 
CC4 Cl 
CC4 C2 
CC5 Cl 
CC5 C2 
CA1 Cl 
CA1 C2 
CA2 Cl 
CA3 Dl 

1 D2 

\ D3 
CB1 Fl 
CB1 F2 
CB2 Gl 

G2 
G3 
G4 

1 1 
HI 

CB3 H3 
CB3 H4 
PI Jl 
P2 J2 
P2 J3 

Model (1) 
Orientation 

PI (2) 
(psi) 

t+(3) 
(msec) 

" 
E 
E 
O 
O 
E 
E 
S 

4 7 
10 6 
24 4 
18 5 
23 4.5 
32 4 
2 9 
6 7 

17 5 
29 4 
38 3 
31 5 
22 6 
27 5 
13 7 
17 6 
22 6 
27 4 
27 4 
15 6.5 
19 5.5 
42 3.8 
27 4 
46 4 
20 (5) 2.4 (5) 
16 (5) 2.3 (5) 
17 (5) 2.3 (5) 
18 2.5 
25 5.1 
23 (5) 4.5 
53 (5) 3.9 
25 3 
25 3 

102 1 

Boundary 
Restraint (4) 

" 
F 

I 
S 
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